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ABSTRACT2

Neuroscience is entering the era of ‘extreme data‘ with little experience and few plans for the associated3
volume, velocity, variety, and veracity challenges. This is a serious impediment for both the sharing of data4
across labs, as well as the utilization of modern and high-performance computing capabilities to enable5
data driven discovery. Here, we introduce BRAINformat, a novel file format and model for management6
and storage of neuroscience data. The BRAINformat library defines application-independent design7
concepts and modules that together create a general framework for standardization of scientific data.8

We describe the formal specification of scientific data standards, which facilitates sharing and9
verification of data and formats. We introduce the concept of Managed Objects, enabling semantic10
components of data formats to be specified as self-contained units, supporting modular and reusable11
design of data format components and file storage. The BRAINformat is built off of HDF5, enabling12
portable, scalable, and self-describing data storage. We introduce the novel concept of Relationship13
Attributes for modeling and use of semantic relationships between data objects, and discuss the14
annotation of data using dedicated data annotation modules provided by the BRAINformat library. Based15
on these concepts we implement dedicated, application-oriented modules and design a data standard for16
neuroscience data.The BRAINformat software library is open source, easy-to-use, and provides detailed17
user and developer documentation and is freely available at: https://bitbucket.org/oruebel/18
brainformat.19
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1 INTRODUCTION

Neuroscience research is facing an increasingly challenging ’big data’ problem due to the growing complexity of experiments21
and the volume/variety of data being collected from many acquisition modalities. Neuroscientists are routinely collecting data in22
a broad range of data formats that are often highly domain specific, ad-hoc and/or designed for efficiency with respect to very23
specific tools and data types. Even for single experiments, scientists are interacting with often tens of different formats—one for24
each recording device and/or analysis—while many data standards are not well-described or are only accessible via proprietary25
software. Navigating this quagmire of formats hinders efficient data analysis, data sharing, and collaboration and can lead to26
errors and misinterpretation of data. File formats and data standards that can represent complex neuroscience data and make27
the data easily accessible play a key role in enabling scientific discovery, development of reusable tools for data analytics, and28
progress towards fostering collaboration in the neuroscience community.29

The requirements towards a data format standard for neuroscience are highly complex and go far beyond the needs of30
traditional, data modality-specific formats (e.g. image, audio, or video formats). A neuroscience data format needs to support the31
management and organization of complex collections of data from many modalities and sources, e.g., neurological recordings,32
audio and video recordings, eye-tracking, motion tracking, task contingencies, external stimuli, derived analytic results, and33
many others. To enable data interpretation and analysis, the format needs to also support storage of complex metadata, e.g.,34
descriptions of recording devices, experiments, subjects etc..35

Advanced neurosciences analytics furthermore rely on complex data access patterns driven by data semantics. For example, to36
study human brain activity underlying speech, scientists need to be able to efficiently annotate and extract data using complex37
combinations of annotations. Annotating data in itself, however, is a highly complex task that requires the coordinated access to38
related data sources. For example, a scientists may use audio or video recordings to identify particular events of interest and in39
turn needs to locate the corresponding data in a neural recording dataset to annotate it. Therefore, it is crucial that neuroscience40
formats support annotation of data as well as the specification and use of relationships between data objects.41

In addition to these more application-specific needs, a usable, sustainable, and extensible data format also needs to satisfy a42
broad range of general, advanced file format and API requirements — e.g, the format should be self-describing, easy-to-use,43
efficient, portable, scalable, verifiable, easy to share and should support self-contained and modular storage of large data.44
Meeting all these complex needs is a daunting challenge. Arguably, the focus of a neuroscience-oriented data standard should be45
on addressing the application-centric needs of organizing scientific data and metadata, rather than on reinventing file storage46
and format methods. For the development of BRAINformat we have utilized HDF5 as the basic storage format as it already47
satisfies a broad range of the more basic format requirements—HDF5 is self-describing, portable, extensible, widely supported48
by programming languages and analysis tools, and is optimized for storage and I/O of large-scale scientific data.49

In this manuscript we introduce the BRAINformat, a novel data format standardization framework and API for scientific data,50
developed at the Lawrence Berkeley National Labs in collaboration with neuroscientists at UCB and UCSF. BRAINformat51
supports the formal specification and verification of scientific data formats and supports the organization of data in a modular,52
extensible, and reusable fashion via the concept of managed objects (Sec. 3.1). To enable the modeling and use of complex53
relationships between data objects, we introduce the novel concept or relationship attributes. Relationship attributes support the54
specification of structural and semantic links between data, enabling users and developers to formally document and utilize55
relationships in a well-structured and programmatic fashion (Sec. 3.2). We demonstrate the use of chains of relationships to56
model complex relationships between multi-dimensional arrays based on data registration via the concept of advanced index57
map relationships (Sec. 3.2.4). The BRAINformat library and format also provides advanced support for definition, storage,58
and management of complex collections of data annotations (Sec. 3.3). We demonstrate the application of our framework to59
design a novel data standard for neuroscience data and its application to the storage and management of electrocorticography60
data collected during speech production (Sec. 4).61
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2 BACKGROUND AND RELATED WORK

The scientific community utilizes a broad range of data formats, which typically focus on different levels of the data organization62
and storage problem. Basic formats explicitly specify how data is laid out and formatted in binary or text data files (e.g., CSV,63
BOF, etc). While such basic formats are common in practice, they generally suffer from a lack of portability, scalability and a64
rigorous specification. For text-based files, languages and formats, such as the Extensible Markup Language (XML) [2] or the65
JavaScript Object Notation (JSON) [1], have become popular means to standardize documents for interchange of data. XML,66
JSON and other text-based data standards (in combination with character-encoding schema, e.g, ASCII or Unicode) play a67
critical role in practice in the exchange of usually relatively small, structured documents but are impractical for storage and68
exchange of large scientific data arrays due to the large overheads and cost they entail for storage, transfer, and I/O.69

For storage of large-scale scientific data, HDF5 [14] and NetCDF [10] among others, have gained wide popularity. HDF5 is a70
data model, library, and file format for storing and managing large and complex data. HDF5 defines a set of core data object71
primitives, specifically: i) Groups which are similar to folders on a file system, used to group data objects, ii) Datasets which72
define n-dimensional arrays of arbitrary shape and data type, and iii) Attributes which are small meta data objects describing73
the nature and/or intended usage of groups or datasets. These data object primitives in combination provide the foundation74
for the organization and storage of highly complex data. HDF5 is portable, scalable, self-describing, and extensible and is75
optimized for storage and I/O of large-scale data. HDF5 is widely supported across programming languages and systems—e.g. R,76
Matlab, Python, C, Fortran, VisIt, ParaView etc.—and the HDF5 technology suite includes tools and applications for managing,77
manipulating, viewing, and analyzing data in the HDF5 format. HDF5 has been adopted as a base format across a broad range of78
application sciences, ranging from physics to bio-sciences and beyond1. Self-describing formats like HDF5 address the critical79
need for standardized storage and exchange of complex and large scientific data.80

Even when self-describing formats like HDF5 are used, the organization of data—such as the structure, names, and descriptions81
of storage objects, e.g., groups, datasets or attributes—often still differ between applications and experiments. This diversity82
makes the development of common and reusable tools for processing, exchange, analysis, and visualization of data challenging.83
Some formats, e.g., VizSchema [12] and XDMF [3], propose to bridge this gap between general-purpose, self-describing formats84
and the need for standardized tools for data exchange, processing, and interpretation by augmenting HDF5 via lightweight,85
low-level schema (often based on XML) to further describe the organization of data. For example, the primary goal of XDMF86
(eXtensible Data Model and Format) [16, 3] is to help standardize methods to exchange scientific data between high-performance87
computing codes and tools. XDMF distinguishes and separates so-called light and heavy data. Light data contains the basic88
description of data arrays—e.g, the value type (float, integer, etc.), precision, location, rank, and dimensions of data arrays—89
while heavy data refers to the actual multi-dimensional arrays storing scientific data values. XDMF stores light data in XML90
while heavy data is stored in HDF5. The focus of formats like XDMF and VizSchema is primarily the standardized description91
of the low-level data organization to facilitate data exchange and tool development.92

In contrast to XDMF and VizSchema, application oriented formats generally focus on specifying the organization of data in a93
semantically meaningful fashion, including but not limited to: the specification of storage object names, locations, descriptions,94
and data hierarchies. Many scientific application formats build on existing self-describing formats (e.g, HDF5), and examples95
include the NeXus [8] format for neutron, x-ray, and muon data, the OpenMSI format for mass spectrometry imaging data [11],96
the CXIDB format [9] for coherent x-ray imaging and many others. Application formats are often described by documents that97
specify the precise location and names of data items and in many cases provide some form of application-programmer interface98
(API) to facilitate reading and writing of format files. Some formats are further governed by formal, computer-readable, and99
verifiable specifications. For example, NeXus uses NXDL2, an XML-based format and schema that allows scientists to define100

1 HDF users – https://www.hdfgroup.org/HDF5/users5.html
2 NeXus Definition Language (NXDL) – http://download.nexusformat.org/doc/html/nxdl.html
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the nomenclature and arrangement of information in a NeXus data file. On the level of HDF5 groups, NeXus also uses the101
notion of Classes to define the fields that a group should contain in a reusable and extensible fashion.102

The critical need for data standards in neuroscience research has been recognized by several efforts over the course of the103
last several years; however, much work remains. Here, our goal is to contribute to this discussion by instantiating a usable and104
sustainable data standard for neuroscience research. The developers of the Klustakwik suite[7, 6] have proposed an HDF5-based105
data format for storage of spike sorting data. Orca (also called BORG) is an HDF5-based format developed by the Allen Institute106
for Brain Science designed to store electrophysiology and optophysiology data 3. The NIX [13] project has developed a set of107
standardized methods and models for storing electrophysiology and other neuroscience data together with their metadata in one108
common file format based on HDF5. Rather than an application-specific format, NIX defines highly generic models for data as109
well as for metadata that can be linked to terminologies (defined via odML) to provide a domain-specific context for elements.110
The open metadata Markup Language odML [5] is a metadata markup language based on XML with the goal to define and111
establish an open and flexible format to transport neuroscience metadata. NeuroML [4] is also an XML-based format with a112
particular focus on defining and exchanging descriptions of neuronal cell and network models. The neurodata without borders113
(NWB)4 initiative is a recent project with the goal “[...] to produce a unified data format for cellular-based neurophysiology114
data based on representative use cases initially from four laboratories – the Buzsaki group at NYU, the Svoboda group at Janelia115
Farm, the Meister group at Caltech, and the Allen Institute for Brain Science in Seattle.” Members of the NIX, KWIK, Orca,116
BRAINformat, and other development teams5 have been invited and have contributed to the NWB effort. NWB has adopted117
concepts and methods from a range of these formats, including from the here-described BRAINformat.118

3 STANDARDIZING SCIENTIFIC DATA

3.1 Data Organization and File Format API119

BRAINformat adopts HDF5 as its main storage backend and uses the following primary storage primitives to organize data120
within files:121

• Group: A group is used—similar to a folder or directory on a file system—to group zero or more storage objects.122

• Dataset: A dataset defines a multidimensional array of data elements, together with supporting metadata (e.g., shape and123
data type of the array).124

• Attribute: Attributes are small datasets that are attached to primary data objects (i.e., groups or datasets) and are used in125
practice to store additional metadata to further describe the corresponding data object.126

• Dimension Scale: This is a derived storage primitive that uses a combination of datasets and attributes to associate datasets127
with the dimension of another dataset. Dimension scales are used in practice to further characterize the dimensions of a128
dataset by describing, for example, the time when samples were measured or the location of samples in space.129

• Relationship Attributes: Relationship attributes are a novel, custom attribute-type storage primitive that allows us130
to describe and model structural and semantic relationships between primary data objects in a human-readable and131
computer-interpretable fashion (described later in Section 3.2).132

Neuroscience research inherently relies on complex collections of data from many modalities and sources. Examples include133
neural recordings, audio and video recordings, eye-tracking, motion tracking, task contingencies, external stimuli, derived134
analytic results, and many others. It is therefore critically important to specify formats in a modular and extensible fashion while135
enabling users to easily reuse format modules and integrate new ones. The concept of managed objects, which we will describe136
next, allows us to address this central challenge in an easy-to-use and scalable fashion.137

3 Orca slides presented at NWB: http://crcns.org/files/data/nwb/h1/NWBh1_09_Keith_Godfrey.pdf
4 Neurodata without Borders – https://crcns.org/NWB
5 http://crcns.org/NWB/hackathon-1
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3.1.1 Managed Objects138

A managed object is a primary storage object—i.e., file, group, or dataset—with: 1) a formal, self-contained format139
specification that describes the storage object and its contents (see Section 3.1.2), 2) a specific managed type/class, 3) a human-140
readable description, and 4) an optional unique object identifier, e.g., a DOI. In file, these basic managed object descriptors are141
stored via standardized attributes. Managed object types may be composed—i.e., a file or group may contain other managed142
objects—and further specialized through the concept of inheritance, enabling the independent specification and reuse of data143
format components. The concept of managed objects significantly simplifies the file format specification process by allowing144
larger formats to be specified in an easy-to-manage iterative manner. By encapsulating semantic sub-components, managed145
objects provide an ideal foundation for interacting with data in a manner that is semantically meaningful to applications.146

The BRAINformat library provides dedicated base classes to assist with the specification and development of interfaces for147
new managed object types. The ManagedObject base API implements common features to 1) define the specification of a148
given managed type, 2) recursively construct the complete format specification, automatically resolving nesting of managed149
objects, 3) verify format compliance of a given HDF5 object, 4) provide access to all common managed object descriptors stored150
in file (i.e., type, description, specification, and object identifier), and provides a standardized interface to 5) access contained151
objects (e.g, datasets, groups, managed object etc.) from file, 6) retrieve all managed object instances of a given managed type,152
and 7) create appropriate manager class instances for a given HDF5 object based on the objects managed type.153

In addition, the ManagedObject base API defines and implements a standardized approach for creation of specific instances154
of managed objects stored in file via a common create(..) method. Managed groups and datasets may be stored either directly155
within the parent managed group or created externally in a separate ManagedObjectF ile file storage container and included in156
the parent via an external link. In this way, the API directly supports self-contained and modular data storage in a transparent157
fashion. Self-contained storage eases data sharing, as all data is contained within a single file, while modular storage allows us158
to more easily manage file sizes and reduce the risk for file corruption by minimizing changes to existing files. From a user’s159
perspective, modular and self-contained storage are handled transparently, i.e., a user can interact with managed objects in the160
same manner independent of whether the object is stored internal or external to the current HDF5 file.161

To implement a new managed object type, a developer simply needs to define a new class that inherits from the appropriate base162
managed class type—i.e., ManagedF ile, ManagedGroup, and ManagedDataset—and implement: 1) the class method163
get_format_specification(...) to create a formal format specification document (described next in Sec. 3.1.2) and 2) the164
object method populate(...), which is called by the standardized ManagedObject.create(...) method and is used to implement165
the type-specific population of managed storage objects to ensure format compliance upon creation—i.e., the goal is to avoid166
that managed objects can be created in an invalid, non-format-compliant state to ensure that files remain format compliant167
throughout their life cycle.168

3.1.2 Format Specification169

To enable the broad application and use of data formats, it is critical that the underlying data standard is easy to interpret by170
application scientists as well as unambiguously specified for programmatic interpretation and implementation by developers.171
Therefore, each data format component (i.e, managed object type) is described by a formal, self-contained format specification172
that is computer interpretable while at the same time including human-readable descriptions of all components.173

We generally assume that format specifications are minimal, i.e., all file objects that are defined in the specification must174
adhere to the specification, but a user may add user-defined data objects (i.e., groups, datasets, attributes etc.) to a file without175
violating format compliance. The relaxed assumption of a minimal specification ensures on the one hand that we can share176
and interact with all format-compliant files and file components in a standardized fashion, while at the same time enabling177
users to easily integrate dynamic and custom data (e.g, instrument-specific metadata), allowing researchers to save all their data178
using BRAINformat even if the current file standard should only partially cover the specific use-case. This is critical to enable179
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scientists to easily adopt the file standard and to allow the file standard to adapt to the ever-evolving experiments, methods, and180
use-case in neuroscience and facilitate new science rather than impeding it.181

The BRAINformat library defines format specification document standards for the specification of the format of 1) files,182
2) groups, 3) datasets, 4) attributes, 5) dimension scales, 6) managed objects, and 7) relationship attributes. All specification183
documents are based on hierarchically composed Python dictionaries that can be serialized as JSON documents for persistent184
storage and sharing. For all data objects we specify the name and/or prefix of the object, whether the object is optional or185
required, and provide a human-readable textual description of the purpose and content of the object. Depending on the object186
type (e.g, file, group, dataset, attribute, etc.) additional information is specified, e.g., i) the datasets, groups, and managed objects187
contained in a group or file, ii) attributes for datasets, groups and files, iii) dimension scales of a dataset, iv) whether a dataset is188
a primary dataset for visualization and analysis or iv) relationships between objects among others. Figure 1 shows as an example189
an abbreviated summary of the format specification of our proposed data standard for neuroscience (described later in Section 4).190
Supplement 2 provides a more detailed discussion and examples of our format specification model. Relationship attributes and191
their specification are discussed in detail later in Sec. 3.2.192

The BRAINformat library implements a series of dedicated data structures to assist with the development and interaction with193
format specifications. Using the provided data structures helps ensure that the generated documents are valid—e.g., that all194
required keys are set and that only valid keys and values are included in a document—and supports the incremental creation of195
format specifications, allowing the developer to step-by-step define and compose format specifications—similar to how one196
typically creates HDF5 files. For example, the following simple code can be used to generate the parts of the BrainDataECoG197
specification shown in Fig. 1:198

>>> from brain.dataformat.spec import *

>>> # Define the raw dataset and associated attribute and dimension

>>> raw_data_spec = DatasetSpec(dataset=’raw_data’, prefix=None, optional=False, primary=’True’,

description="Dataset with the ECoG recordings data")

>>> raw_data_spec.add_attribute( AttributeSpec(attribute=’unit’, prefix=None, value=’Volt’) )

>>> raw_data_spec.add_dimension( DimensionSpec(name=’space’, unit=’id’, dataset=’electrode_id’,

axis=0, description="Id of the recording electrode"))

>>> # Define the group and add the dataset

>>> brain_data_ecog = GroupSpec(group=None, prefix=’ecog_data_’,

description="Managed group for storage of raw ECoG recordings.")

>>> brain_data_ecog.add_dataset(raw_data_spec, ’ecog_data’)

Using the BRAINformat specification infrastructure we can easily compile a complete data format specification document199
that lists all managed object types and their format. For example, the simple Python code shown here compiles the format200
specification document for our neuroscience data format directly from the Python API of our format (see also Sec. 4):201

>>> from brain.dataformat.spec import FormatDocument

>>> import brain.dataformat.brainformat as brainformat

>>> json_spec = FormatDocument.from_api(module_object=brainformat).to_json()

Figure 1 shows an abbreviated summary of the result of the above code. The full JSON document is shown in Supplement 2, pp.202
51 – 61. Alternatively, we can also recursively construct the complete specification for a given managed object type —e.g., here203
for the main file of the proposed neuroscience format described in Sec. 4— via:204

>>> from brain.dataformat.brainformat import BrainDataFile

>>> from brain.dataformat.spec import *

>>> format_spec = BrainDataFile.get_format_specification_recursive() # Construct the document

>>> file_spec = BaseSpec.from_dict(format_spec) # Verification of the document

>>> json_spec = file_spec.to_json(pretty=True) # Convert the document to JSON

This is a pre-print document, not the final typeset article 6
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{  
    "BrainDataFile": {...},  
    "BrainDataMultiFile": {...},  
    "BrainDataData": {  
        "attributes": [],  
        "datasets": {},  
        "description": "Managed group for storage of brain data (internal and external).",  
        "group": "data",  
        "groups": {},  
        "managed_objects": [{"format_type": "BrainDataInternalData”, "optional": false},  
                            {"format_type": "BrainDataExternalData”, "optional": false}],  
        "optional": false,  
        "prefix": null,  
        "relationships": []  
    },  
    "BrainDataInternalData": {...},  
    "BrainDataECoG": {  
        "attributes": [],  
        "datasets": {  
            "ecog_data": {  
                "attributes": [{"attribute": "unit”, "optional": false, 
                                "prefix": null,"value": "Volt”}],  
                "dataset": "raw_data",  
                "description": "Dataset with the ECoG recordings data",  
                "dimensions": [{"axis": 0,  
                                "dataset": "electrode_id",  
                                "description": "Id of the recording electrode",  
                                "name": "space",  
                                "optional": false,  
                                "relationships": [],  
                                "unit": "id”},  
                               ...  
                ],  
                "dimensions_fixed": true,  
                "optional": false,  
                "prefix": null,  
                "primary": true,  
                "relationships": []  
            },  
            ...  
        },  
        "description": "Managed group for storage of raw ECoG recordings.",  
        "group": null,  
        "groups": {},  
        "managed_objects": [...],  
        "optional": false,  
        "prefix": "ecog_data_",  
        "relationships": []  
    },  
    "BrainDataECoGProcessed": {...},  
    "AnnotationDataGroup": {...},  
    "BrainDataExternalData": {...},  
    "BrainDataDescriptors": {...},  
    "BrainDataDynamicDescriptors": {...},
    "BrainDataStaticDescriptors": {...},
    "ManagedObjectFile": {...},  
}

Legend

...          This part has been omitted
             from the document. See 
             Supplement 2 pp. 51—61 for
             details.

BrainData    Managed Object Type

{...}        Format specification

Figure 1. Abbreviated specification document for our neuroscience data format listing all current managed object types and partial specification for select
structures illustrating the general structure of a formal specification document generated using the BRAINformat library. The full specification document is
available as part of Supplement 2 pp. 51 – 61 (and the full recursive specification for a brain format file is shown in Supplement 2 pp. 35 – 51).

In this case, all references to other managed objects are automatically resolved and their specification is directly embedded in205
the resulting specification document. While the basic specification for BrainDataF ile consists only of ≈14 lines of code (see206
Supplement 2, pp. 30), the full, recursive specification contains more than 910 lines (see Supplement 2, pp. 35 – 51), illustrating207
the critical importance for being able to incrementally define format specifications.208

The ability to compile complete format specification documents directly from data format APIs allows developers to easily209
integrate new format components (i.e. managed object types) in a self-contained fashion simply by adding a new API class210

This is a pre-print document, not the final typeset article 7
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without having to maintain separate format specification documents. Furthermore, this strategy avoids inconsistencies between211
data format APIs and specification documents since format documents are updated automatically.212

The concept of managed objects in combination with the format specification language and API provide an application-213
independent design concept that allows us to define application-specific formats and modules that are build on best practices.214

3.2 Modeling Data Relationships215

Neuroscience data analytics often rely on complex structural and semantic relationships between datasets. For example a216
scientist may use audio recordings to identify particular speech events during the course of an experiment and in turn needs to217
locate the corresponding data in an electrocorticography recording dataset to study the neural response to the speech events.218
In addition, we often encounter structural relationships in data, for example, in the case of data structures where one array219
indexes another array or two arrays share data dimensions because they have been acquired using the same recording device220
and many others. To enable efficient analysis, reuse, and sharing of neuroscience data it is critical that we can model the221
complex relationships between data objects in a structured fashion to enable human and computer interpretation and use of data222
relationships.223

Modeling data relationships is not well-supported by traditional data formats, but is typically closer to the domain of scientific224
databases. In HDF5, we can compose data via HDF5 links (soft and hard) and associate datasets with the dimensions of another225
dataset via the concept of dimension scales. However, these concepts are limited to very specific types of data links that do not226
describe the semantics of the relationship. A new general approach is needed to describe more complex semantic links between227
data objects in HDF5.228

3.2.1 Specifying and Storing Relationships229

Here we introduce the novel concept of relationship attributes to describe complex semantic relationships between a source230
object and a target data object in a general and extensible fashion. Relationship attributes are associated with the source object231
and describe how the source is related to the target data object. The source and target of a relationship may be either a HDF5232
group or dataset.233

Relationship attributes are—like other file components— specified via a JSON dictionary and are part of the specification of234
datasets and groups. Like any other data object, relationships may also be created dynamically to describe any relationships that235
are unknown a priori. Specific instances of relationships are stored as attributes on the source HDF5 object, where the value of236
the attribute is the JSON document describing the relationship. As illustrated in Fig. 2, the JSON specification of a relationship237
consists of the following main components:238

1.The specification of the name of the attribute and whether the attribute is optional. When stored in HDF5 we prepend the239
prefix RELATIONSHIP_ATTR_ to the user-defined name of the attribute to describe the attribute’s class and ease240
identification of relationship attributes.241

2.A human-readable description of the relationship and an optional JSON dictionary with additional user-defined data relevant242
to the relationship.243

3.The specification of the type of the relationship (described next in Sec. 3.2.2).244

4.The specification of the axes of the source object to which the relationship applies. This may be: i) a single index, ii) a list245
of axes, iii) a dictionary of axis indices if the axes have a specific user meaning, or iv) None if the relationship applies to246
the source object as a whole. Note, we do not need to specify the location of the source object, as the specification of the247
relationship is always associated with either the source object in HDF5 itself or in the format specification.248

5.The specification of the target object describing the location of the object and the axes relevant to the relationship (using the249
same relative ordering or names of axes as for the source object).250
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Specification of the location 
and relevant axes of the 
target object 

image_map                        image1 indexes 

Specification of the relevant 
axes of the source object 

Type of  the relationship 

Human readable description 
and additional user data 

Name and properties of the 
HDF5 attribute 

{
     "attribute": "full_res_image_IMR_MAP_TO_TARGET”,
     "prefix": None,
     "optional": False,
     "description": "The source defines a map from /image2 
                     to the target of this relationship",
     "properties": None,
     "relationship_type": "indexes”,
     "axis": {"INDEXING_AXIS": 2,
              "STACK_AXIS": 3}, 
     "target": {"axis": [0, 1],
                "dataset: "image1”,
                "filename": None,
                "global_path": None,
                "group": None,
                "prefix": None},
}

Figure 2. Example specification of a relationship attribute illustrating the main components of the specification.

3.2.2 Relationship Types251

The relationship type describes the semantic nature of the relationship. The BRAINformat library currently supports the252
following main types of relationships, and additional types can be added in the future:253

• order: This relationship type indicates that elements along the specified axes of the relationship are ordered in the target in254
the same way as in the source. This type of relationship is very common in practice. For example, in the case of dimension255
scales, an implicit assumption is that the ordering of elements along the first axis of the scale-dataset matches the ordering256
of the elements of the dimension it describes. This assumption, however, is only implicit and is by no means always true257
(nor does HDF5 require this relationship to be true). Using an order relationship we can make this relationship explicit.258
Other common uses of order relationships include describing the matched ordering of electrodes in datasets that have been259
recorded using the same device or matched ordering of records in datasets that have been acquired synchronously.260

• equivalent: This relationship type expresses that the source and target object encode the same data (even if they might store261
different values). This relationship also implies that the source and target contain the same number of values ordered in the262
same fashion. This relationship occurs in practice any time the same data is stored multiple times with different encodings.263
For example to facilitate data processing a user may store a dataset of strings with the names of tokens and store another264
dataset with the equivalent integer ID of the tokens.265

• indexes: An indexes relationship describes that the source dataset contains indices into the target data object (group or266
dataset). In practice this relationship type is used to describe basic data structure where we store, for example, a list of267
unique values (tokens) along with other arrays that reference that list.268

• shared encoding: This relationship indicates that the source and target data object contain values with the same encoding269
so that the values can be directly compared (via equals "=="). This relationship is useful in practice any time two data270
objects (datasets or groups) contain data with the same encoding (e.g. two datasets describing external stimuli using the271
same ontology).272

• shared ascending encoding: This relationship type implies that the source and target data object share the same encoding273
and in addition that the values are sorted in ascending order in both data objects. The additional constraint on the ordering274
enables i) comparison of values via greater than ">" and less than "<" (in addition to equals ==) and ii) more efficient275
processing and comparison of data ranges. For example, in the case of two datasets that encode time, we often find that276
individual time points do not match exactly between the source and target (e.g, due to different sampling rates). However,277
due to the ascending ordering of values, a user is still able to compare ranges in time in a meaningful way.278
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Figure 3. Overview of the main relationship types and the implied mapping of point- and range-based selections from the source to the target object. In each
cell we show the source object on the left and the target object of the relationship on the right. (a) For order relationships we can directly map array indices
between the data objects. In the case of order relationships involving HDF5 Groups we assume alphabetic ordering of elements. (b) In the case of indexes
relationships we map selections by retrieving the relevant indicies from the source array. (c) For shared encoding and indexes values relationships we support
data selection via value-based data mapping, i.e., we map selections by locating all data values in the target object that match at least one of the values we
selected in the source object. (d) Shared ascending encoding relationships behave in general similar to shared encoding relationships, however, the additional
constraint that values are sorted in ascending order enables us to map range selections directly based on the minimum and maximum value selected in the source
dataset (in contrast to the strict equal value matching of shared encoding). (e) User relationships define custom user semantics and do not imply a specific
mapping between data elements (not shown).

• indexes values: This relationship is typically used to describe value-based referencing of data and indicates that the source279
data object selects certain parts of the target data object based on data values (or keys in the case of groups). This relationship280
is a special type of shared encoding relationship.281

• user: The user relationship is a general container to allow users to specify custom semantic relationships that do not match282
any of the existing relationship patterns. To further characterize the relationship, we often store additional metadata about283
the relationship as part of the user-defined properties dictionary of the relationship attribute.284

3.2.3 Using Relationship Attributes285

Relationship attributes are a direct extension to the previously described format specification infrastructure. Similar to other286
main data objects, BRAINformat provides dict-like data structures to help with the formal specification of relationship attributes.287
In addition, the BRAINformat library also provides a dedicated RelationshipAttribute API, which supports creation and retrieval288
of relationship attributes (as well as index map relationship, described in Sec. 3.2.4) and provides easy access to the source and289
target HDF5 object and corresponding specifications of relationship attributes.290

One central advantage of explicitly defining relationships is that it allows formalizing the interactions and collaborative usage291
of related datasets. In particular, the relationship types imply formal rules for how to map data selections from the source object292
of a relationship to the target object. The RelationshipAttribute API implements these rules and supports slicing, which allows us293
to easily map selections from the source to the target data object using the same familiar slicing syntax. For example, assume we294
have two datasets A and B related to each other via an indexes relationship RA→B . A user now selects the values A[1 : 10] in295
the source dataset A and wants to locate the corresponding data values in the target data object B. Using the BRAINformat API296
we can now simply write RA→B [1 : 10] to map the selection [1 : 10] from the source A to the target B, and if desired retrieve297
the corresponding data values in B via B[RA→B [1 : 10]]. Figure 3 provides an overview of the rules for mapping selections298
based on the type of the relationship.299

Relationship attributes standardize the specification, storage, and programmatic interface for creating, discovering, and300
using relationships and related data objects. Describing relationships between data explicitly greatly simplifies the process of301
interacting with multiple datasets and facilitates the collaborative use of data by enabling utilization of multiple datasets in302
conjunction without having to a priori know the relationships and datasets involved. In this way, relationship attributes also open303
the route for the standardized development of novel data-driven analytics and workflows based on the programmatic discovery304
and use of related data objects.305
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3.2.4 Index Map Relationships306

Beyond the description of direct object-to-object relationships, relationship attributes also form the building blocks that allow307
us to specify higher-order relationships. Using relationship attributes we can define chains of object-to-object relationships308
that, when interpreted in conjunction, express highly complex structural and semantic relationships. For example, imagine309
the following situation. Scientists have acquired an optical microscopy image A and an electron microscopy image B of the310
same brain. Using the optical image a scientist identifies a particular brain region of interest and now wants to study the same311
region further using the electron-microscopy image. This seemingly simple task of accessing corresponding data values in two312
related datasets is in practice, however, often highly complex. Even if the data registration problem between the datasets is313
solved, a user still has to know exactly: i) the location of both datasets A and B, ii) how the two datasets are related, iii) what the314
transformations generated by the data registration process are, iv) how to utilize that information to map between A and B, and315
v) write complex, custom code to access the data.316

Index map relationships allow us to explicitly describe this complex relationship between A and B via a simple chain of317
object-to-object relationship attributes and to greatly simplify the cooperative interaction with the data. Rather than describing318
the relationship between A and B directly, users can create an intermediate index map MA→B that stores for each pixel in A the319
index of the corresponding pixel(s) in B. MA→B explicitly and unambiguously describes the mapping from A to B so that320
we can directly utilize the mapping without having to perform complex and error-prone index transformations (which would321
be needed if we described the mapping implicitly, e.g., via scaling, rotation, morphing and other data transformations). As322
the table in Fig. 4 shows, via a simple series of relationship attributes describing simple object-to-object relationships, we can323
unambiguously describe the complex relationship between A and B via MA→B . Given only our source dataset A (or index map324
MA→B) we can now easily discover all relevant data objects (A, B, and MA→B) and relationships (Fig. 4) without having to a325
priori know the mapping or the location of the datasets. Via the index map relationship, we can now directly map selections:326
i) from A to MA→B and vice versa ii) from MA→B to B, and most importantly iii) from A to B simply by slicing into our327
indexes relationship (Fig. 4, row 3) to retrieve the corresponding indices from our index map MA→B . As data mappings are328
described explicitly, index map relationships enable registration and mapping under arbitrary transformations. Also, mappings329
are not required to be unique—i.e., arbitrary N-to-M mappings between elements are permitted—and the source and target of330
relationships may not just be datasets but also groups, i.e., index map relationship can be used to define mappings between331
contents of groups or even groups and datasets in HDF5.332

Source Relationship Target Description
1. A

order−−−−−→ MA→B This relationship describes that elements in A are ordered in the same way as the
elements in the index map MA→B . In addition we may further specify the axes in
the source A and target MA→B along which the relationship applies.

2. A
order←−−−−− MA→B Inverse of (1), describing the object ordering relationship between MA→B and A.

3. MA→B
indexes−−−−−→ B This relationship indicates that MA→B stores indices into B and describes how

our map can be used to access B. An example specification of this relationship is
shown in Fig. 2.

4. A
user−−−−−→ B An optional user-type relationship may be used to further characterize the semantic

relationship between A and B.

Figure 4. Overview of the relationships used to define an advanced index map relationship. We present a specific example later in Fig. 5.

BRAINformat implements the concept of index map relationships—similar to dimension scales and relationship attributes—333
via a set of simple naming conventions for the attribute names. In addition to the RELATIONSHIP_ATTR prefix, we use a set334
of reserved post-fix values—specifically _IMR_MAP_TO_TARGET,_IMR_MAP_TO_SOURCE, _IMR_SOURCE_TO_MAP,335
_IMR_SOURCE_TO_TARGET—that are appended to the user-defined attribute name to identify the different components of the336
index map relationship. The BRAINformat API directly supports index map relationships so that we can, for example, directly337
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Figure 5. Illustration of an index map relationship describing the interaction between a processed image and the original image. The processed image is in
this case a 5× smaller version of the original image created using nearest neighbor interpolation. The intermediary index map describes for each pixel in the
processed image which pixels it corresponds to in the the original image. Two order relationships (red arrows) describe the interactions between the processed
image and the map and vice versa. A third indexes relationship links our index map to the original image and describes how the map can be used to access the
original image. Optionally, we may create a fourth user relationship (black arrow) to further characterize the semantic relationship between the processed and
original image (e.g, to store a description of the algorithm and parameters used to generate the image). Naturally, we can also describe the inverse mapping
between the original and processed image via a second index map relationship.

create and locate all relationships that define an index map relationship via a single function call and programmatically interact338
with the relationships. Supplement 1 (pp.12–26) includes an overview and basic tutorial of the API for creating and using index339
map relationships.340

Index map relationships have broad practical applications, including data registration, sup-component analysis, correlation of341
data dimensions, and optimization. Index map relationships are directly applicable to specify the mapping between images in a342
time series or a stack of physical slices as well as to define correspondences between images from different modalities. We343
may also define mappings between select dimensions of a dataset to correlate data from different recordings in time or space.344
Furthermore, analytics are often based on characteristic sub-components of a dataset. As such, a user may extract and separately345
process sub-components of datasets (e.g. a sub-image of a single cell) and use index map relationships to map the extracted or346
derived analysis data back to the original data. To optimize data classification, feature detection, and other compute-intensive347
analyses, a user may perform initial calculations on lower-resolution versions of a dataset and use index map relationships to348
access corresponding data values in the high-resolution version of the dataset for further processing.349

Figure 5 illustrates an example index map relationship for the latter use-case. The complete source code and further details for350
this example are available in Supplement 3. In this example, our original dataset is a RGB image dataset of size (665× 960)351
that has been processed to reduce the size in the two spatial dimensions by a factor of 5 to (133 × 3) via nearest neighbor352
interpolation. Each pixel in the processed image, hence, maps to a 5× 5 sub-region in the original image. We, hence, create353
a 4-dimensional index map dataset where: 1,2) the first two dimensions correspond to the spatial dimensions x and y of the354
images, 3) the third dimension is our index axis of length 2 since each pixel is described by two integer indices, and 4) the fourth355
dimension is our stacking axis with the list of all corresponding pixel. Using the BRAINformat API, we can now create the356
index map relationship—which is defined by the arrows shown in Figure 5—via a single function call (Supplement 3–Sec. 1.3).357
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Figure 6. Illustration of the result from using our index map relationship to perform data selection in our source, processed image (a) and target, original image
(b). (a) First we apply the selection (47, 98) (blue arrow) to our source dataset (left). As expected, this results in the selection of a single pixel (right). (b) We
next map the same selection to our target dataset (left). From the blue arrow we can see that the selection was mapped correctly to same relative location as in
our source, image. The pixel plot (right) illustrates that the mapping resulted, as expected, in the selection of a 5× 5 sub-image from our target image. We can
also see that the top-left pixel of our selected sub-image matches the color of the pixel we retrieved in the source dataset (a, right). This is expected since the
source image (a, left) was generated from the target image (b, left) via 5× downsampling using nearest neighbor interpolation.

As illustrated in Figure 6, we can now easily map a selection (here [47, 98]) from our source (processed image) to the target358
(original) image simply by slicing into our index map relationship (imr) via imr[MAP_TO_TARGET ][47, 98] and retrieve359
the data of the corresponding subimage from our original image (Supplement 3–Sec. 1.4).360

As this simple example illustrates, index map relationships allow us to explicitly describe complex relationships between data.361
Being able to unambiguously describe complex relationships is critical to enable us to programmaticaly utilize relationships and362
perform complex multi-data analytics and to reduce risk for errors due to implicit assumptions about relationships between data363
objects. Index map relationships are not restricted to just define relationships between HDF5 datasets but can also be used to364
define relationships involving HDF5 groups or managed objects. Here we focus on index map relationships, but the same basic365
concept of chaining relationships could be applied to construct other types of complex object inter-relationships as well.366

3.3 Annotating Scientific Data367

Advanced neuroscience analytics rely on complex data access patterns driven by data semantics. For example, common368
neuroscience data analytics often focus on understanding how different brain regions—measured, e.g., by collocated electrodes—369
operate together and interact with each other during specific, randomly interleaved events, e.g., time intervals when a subject370
said ‘baa‘ or performed a particular motion. The ability to annotate data by associating semantic metadata with data subsets is371
critical to facilitate these kinds of analyses. Annotating data in a scalable and usable fashion is challenging and relies on complex372
data structures to describe data selections and associated metadata.373

To support data annotation, the BRAINformat library provides a series of modules that implement general and reusable data374
structures to describe individual data selections and data annotations (Sec. 3.3.1) and modules to manage and store collections375
of data annotations (Sec. 3.3.2). The BRAINformat annotation package supports annotation of in-memory data arrays (e.g.,376
numpy arrays) as well as in-file arrays (i.e., HDF5 datasets) and processing of data annotations may be performed in-memory or377
out-of-core (i.e., with the majority of data residing on disk and being only loaded when needed).378

3.3.1 Data Selection and Annotation379

The first steps in annotating data is to describe 1) the data object that contains the data and 2) the data selection describing380
the subset of the data to annotate. The first part of describing the data object itself is generally simple and consists of either a381
basic reference to the data object in memory or an HDF5 link to the corresponding object in file. Describing data selections,382
however, is in practice not as simple. In the context of neuroscience data, researchers often need to generate a large numbers383
of annotations that refer to complex subsets of data, leading to advanced data selection, storage, and API requirements for384
describing, storing, and interacting with data selections. For example, along a single axis (such as time), features of interest385
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Figure 7. High-level comparison of four common schema for representing data selections. In each case, structured, multi-dimensional selections are constructed
by the intersection (AND) of one-dimensional selections along the individual axes while None is used to efficiently describe the selection of all elements along a
given axis.

are often discontinues—e.g., when describing multiple events of the same type—and complex features are often the result of386
combinations of basic features along multiple dimensions—e.g., the output measured by electrodes located in the hippocampus387
while the animal is in a specific location.388

The table in Fig. 7 provides a high-level comparison of four common schema for describing data selections (columns) with389
respect to their general behavior in regard to some main requirements for annotating neuroscience data (rows). Slicing is a390
very convenient way to express highly structured selections that can be described via a simple tuple of (start, stop, step) but it391
does not support selection of complex data subsets. Binary vectors—describing for each element along a given axis whether392
the element is selected—are generally a good option. One main disadvantage of binary vectors is that the memory cost can393
be high when having to process a large number of selections in uncompressed form in memory. In practice, however, most394
operations can be performed iteratively and out-of-core. Lists of indices—describing along each axis the specific, selected395
elements—are also a very good option. The main disadvantage of index lists lies in the high cost for describing dense selections396
and the variable length arrays needed to describe the selections. More advanced data selection methods, such as, word-aligned397
hybrid compressed bitmap indices [17, 18] are also very promising. One main disadvantage of such advanced indexing schema398
is that they are not easily interpreted without a dedicated API, potentially hindering reuse of the HDF5 files. For the initial399
development of the BRAINformat annotation API and format we have chosen binary vectors as the main scheme to represent400
complex data selections and are planing to add support for additional schema in the future.401

Fig. 8(a) illustrates how we can represent and combine complex selections using binary vectors. Along each dimension we402
store a binary vector describing the elements that are selected (True, color) or not selected (False, white). This allows us to403
easily represent arbitrary selections using constant-length selection vectors. The binary vectors can be efficiently combined404
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Figure 8. Overview of common data selections and binary combinations of data selections. (a) Basic data selections are defined via 1D binary vectors
demarking the elements selected along a given dimension. Basic multi-dimensional selections are then defined via binary AND (&) combinations of such
per-axis binary vectors. This allows complex selections to be expressed and stored efficiently. Along a given axis we may combine selections via boolean
operations—including, AND, OR, XOR, and NOT—without the need to expand the selection to a complex selection. (b) We support complex selections
that cannot be expressed via combinations of hyper-slices through expansion of the selection to a full binary map allowing the definition of arbitrary selections.
Complex selections are required in practice to define OR, XOR, and NOT combinations of multi-dimensional selections and for arbitrary user selections.

directly using common binary operations and multi-dimensional selections can be easily described by the intersection of multiple405
binary vectors. Arbitrary multi-dimensional selections—needed to describe complex, multi-dimensional combinations of basic406
selections and arbitrary user-defined selections—can be described via full binary selection masks (see Fig. 8(b)).407

Now that we can describe data selections, we can extend our design to define annotations. A single data annotation in408
BRAINformat consists of the following main elements: i) the data selection object describing the data object and subregion of409
the data the annotation applies to, ii) a user-defined string indicating the type of the annotation, iii) a human-readable description410
of the annotation, and iv) a dictionary of additional user-defined properties of the annotation, Currently the format requires that411
the keys of the properties dictionary are strings and that the values are arbitrary, basic data objects, e.g, stings or numbers. This412
simple design allows us to describe complex annotations in an easy-to-use fashion.413

The BRAINformat data selection and annotation API can be used to annotate any data object that can describe its shape as an414
n-dimensional array and supports numpy/h5py-style array slicing, including numpy arrays, HDF5 datasets, and certain managed415
objects that implement an array-like interface. The data selection and annotation API supports (among other things):416

• Selection of elements via basic array slicing and assignment, e.g., to select the first five elements along the time axis for a417
data selection A, we may write A[′time′, 0 : 5] = True.418

• Retrieval of the selection vector along a given axis via simple slicing, e.g, A[′time′].419

• Retrieval of the data selected by an annotation or data selection via A.data().420

• Common binary operations to merge data selections and annotations, including i) AND, ii) OR, iii) NOT, and iv) XOR.421

• Comparison of data selections and annotations via common operations, such as >, >=, <, <=, ==, ! =, and in. These422
operations are based on the comparison of the selected array indices so that, e.g., A > B is only true if B is a true subset of423
A (in contrast to a simple length-based comparison which would only require |A| > |B|).424

• Preceded (A << B) and follows (A >> B) operations describing whether all elements selected by A have array indices425
less than or greater than B, respectively. This is useful, for example, to identify if an event in time selected by A occurs426
before/after B.427
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• Basic investigation via functions like len, count, counts, axes or axis_bounds to retrieve the total and per-axis number428
of elements selected or the axes that are restricted and index ranges et cetera.429

3.3.2 Managing Collections of Data Annotations430

So far we have focused on describing single annotations. Neuroscience analytics often rely on large collections of annotations431
to describe, e.g., multiple behavioral measures, external stimuli, brain regions and many other types of annotations. During the432
course of an experiment we often encounter many thousands of events and features of a given type and in some cases millions433
(e.g, action potentials). Storing all these annotations individually would quickly result in an explosion of datasets and groups in434
the HDF5 file, hindering both usability and computational performance. It is, therefore, critical that we can represent collections435
of annotations in a compact fashion via a limited number of data objects (Fig. 7). In addition, we need to be able to easily search436
collections of annotations to locate subsets of annotations of interest, e.g., all annotations describing movements to a specific437
region in space.438

Annotation collections are managed in the BRAINformat library by the AnnotationDataGroup (and AnnotationCollection)439
module, which uses the ManagedObject design (see Section 3.1.1) to define a general, reusable, and extensible storage module440
and format for collections of data annotations. Each collection of annotations applies to a specific data object and has a441
user-defined description. The corresponding binary selection vectors of all annotations in a given collection have the same length,442
since all annotations refer to the same data object. For each data axis, we can store an arbitrary number of selections in a single443
two-dimensional data array with a shape of #selections ×#values. To reduce storage cost, we enable gzip compression444
—which is natively supported by HDF5—when saving the binary data selection arrays to file. Using compression drastically445
reduces the size of data selections in file and enables us to efficiently store large collections of data annotations. The type,446
descriptions, and individual properties of all annotations are then stored separately in one-dimensional arrays. This simple447
scheme allows us to store an arbitrary number of annotations in a fixed number of arrays while allowing us to easily retrieve448
specific annotations as well as independently access individual fields for searching (e.g., annotation type, description, and449
individual properties).450

Collections of annotations may be created in-memory or in-file. When accessing collections of annotations that are stored451
in-file, the bulk of the data—such as the selection properties and binary selection vectors—typically remain out-of-core and are452
only read when needed,for example when searching for annotations based on a particular property. To ease the use of collections453
of annotations, the BRAINformat API supports:454

• Filtering (i.e., search) of annotations to locate annotations based on the:455
i) index of annotations,456

ii) axes that are restricted by the annotations to find, e.g., all annotations that select features in time,457

iii) full or partial type of annotations to find, e.g., all annotations that define a speech event,458

iv) full or partial description of annotations, and459

v) full or partial user-defined metadata properties of annotations to find e.g., all annotations that have a particular460
user-level, start time or stop time etc..461

All filter functions return one-dimensional binary selection vectors that can be easily combined via standard binary462
operations. This allows us to easily define complex queries. For example to locate all speech events when a subject said463

’baa’ in a collection of annotations C, we can simply write C.type_filter(′speech event′) & C.property_filter(key =′464
vocalization′, value =′ baa′).465

• Selection of subsets of annotations, i.e., the creation of new collections of annotations through the application of a filter via466
basic slicing, e.g., C[ C.type_filter(′speech event′)].467

• Merging of all annotations in a collection to a single annotation via union (OR), intersection (AND), and exclusive468
disjunction (XOR).469
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• Loading/retrieval of the individual annotations and data selected by the annotations in the collection.470

• Basic introspection to retrieve information about, e.g., the number of annotations, list of unique annotation types and471
descriptions, properties, etc..472

• Creation, expansion, and saving of annotation collections.473

Other more specialized functions of annotation collections include the calculation of a containment matrix, describing which474
annotations are contained in each other. This is useful in the context of hierarchically organized annotations. For example, in the475
context of speech, we have annotations that describe individual syllables, words, sentences and so on.476

4 RESULTS

4.1 Applications to Neuroscience Data477

In the following we describe the application of the BRAINformat data standardization framework to the development of a data478
format for neuroscience data with an initial focus on electrocorticography (ECoG) data collected from neurosurgical patients479
during speech production. This data shares many requirements with standard electrophysiology data collected by the broader480
neuroscience community: storage of voltage recordings over time across multiple spatial distributed sensors with heterogenous481
geometries, complex and multi-tiered task descriptions, post-hoc processing of raw data to extract the signal of interest, the482
association of physiology data with multi-modal data streams collected simultaneously by other devices, the linkage of data483
associated with the same ’task’ across multiple sessions, and the necessity to store rich meta-data to make sense of it all.484

4.1.1 High-level Data Organization485

Fig. 9 shows and example visualization of a BRAINformat file using HDFView. The tree view shown on the left illustrates the486
high-level data hierarchy. In our discussion of the high-level data organization we use the following notation to denote the path487
in HDF5 and corresponding managed type: path : managed type.488

In the main HDF5 file / : BrainDataFile the data is organized in a basic semantic hierarchy. On the highest level we489
distinguish between data and descriptors, i.e., raw and processed data generated through experimentation and analysis vs.490
globally accessible metadata. We then further distinguish between static metadata (i.e. descriptions of the basic data acquisition491
and experimental parameters) and dynamic metadata (e.g. descriptions of post-processing parameters) and categorize data into492
internal data (i.e. data collected inside the brain, e.g. electrophysiology recordings) and external data (i.e. data collected external493
to the animal, e.g. sensory stimuli, audio recordings, position of body parts, etc.). These divisions are not strictly necessary, but494
impose some minimal structure on the format that eases the interpretability by users. The following list illustrates the high-level495
data organization in more detail:496

• /data : BrainDataData contains the actual raw and processed data generated through experimentation and analysis.497

• /data/internal : BrainDataInternalData contains all internal data, i.e., all raw and processed data498
from physiological measurements.499

• /data/internal/ecog_data_# : BrainDataECoG is designed for storage of voltage500
recordings over time across multiple spatially distributed sensors with heterogenous501
geometries, and complex and multi-tiered task descriptions (see Sec. 4.1.2).502

• /data/internal/ecog_data_processed_# :BrainDataECoGProcessed is derived503
from BrainDataECoG and is designed for storage of post-processed voltage504
recordings over time across multiple spatial distributed sensors where signals of505
interest have been extracted and optionally categorized (see Sec. 4.1.3).506
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• /data/external : BrainDataExternalData is used to collect all external data, such as recordings of507
sensory stimuli and other external measurements.508

• /descriptors : BrainDataDescriptors is a container for global metadata. Specific metadata objects may be referenced in509
other managed objects via HDF5 links. This strategy avoids redundant storage while at the same time providing easy access510
to the data from specific data groups and allowing scientists to collect general metadata in a central location, facilitating511
meta- and mega analysis.512

• /descriptors/static : BrainDataStaticDescriptors is a container for static metadata, e.g., metadata513
describing the instruments and other fixed information.514

• /descriptors/dynamic : BrainDataDynamicDescriptors is a container for dynamic metadata, e.g.,515
information that is derived through post-hoc analyses or metadata that may dynamically change during516
the data life cycle.517

In practice, scientists regularly acquire data in series of distinct experiment sessions often distributed over long periods of time.518
To facilitate management and sharing of data, it is useful to store the data generated from such distinct recordings in separate519
data files, yet for analysis purposes the data often needs to be analyzed in context. To allow the organization of related data520
files we support the grouping of files in container files / :BrainDataMultiFile in which each primary BrainDataFile file is521
represented by an HDF5 group /entry_# that defines an external link to the root group of the corresponding file. This simple522
concept enables users to interact with the data as if it were located in a single file while the data is physically being stored523
distributed across many files.524

In addition to the format-specific modules described so far, we use the generic AnnotationDataGroup (see Sec. 3.3.2)525
managed type for management and storage of collections of annotations associated with raw data and processed data (Sec. 3.3.2).526
We also use the generic ManagedObjectFile module (see Sec. 3.1.1) to support modular storage of managed objects in separate527
HDF5 files (which are in turn included in the parent via an external links). This allows users to flexibly store and share analytics528
as independent files while at the same time making the results easily accessible from the main data file and limiting the need for529
large-scale updates to the main file.530

We will next discuss the storage of voltage recordings over time across multiple spatial distributed sensors via the531
BrainDataECoG and BrainDataECoGProcessed modules in more detail. For further details on the data organization we532
refer the interested reader to the specification documents of the data format shown in Supplement 2 (pp 35 – 62). Figure 1 also533
shows an abbreviated version of the specification document, listing all current managed object types in blue.534

4.1.2 Storing ECoG Data535

A central application in neuroscience data is the acquisition and storage of voltage recordings over time across multiple spatial536
distributed sensors, e.g., via electrocorticography (ECoG), multi-channel electrophysiology from silicon shanks or Utah arrays.537
In the following we focus in particular on electrocorticography (ECoG) data collected from neurosurgical patients during speech538
production, however, we intend to extend these capabilities to other use-cases as well—such as physiology data collected in539
model species during standard sensory, motor, and cognitive neuroscience tasks—and the format has been designed with this540
extensibility in mind.541

The BrainDataECoG module defines a managed group in HDF5 that serves as a container to collect all data pertaining to the542
voltage recordings in a single location. The primary dataset raw_data defines a two-dimensional, space × time array storing543
electrical recordings in units of V olts. Auxiliary information about the data, e.g, the sampling_rate, in Hz, the unit of V olts,544
and the spatial layout of the electrodes are stored as additional datasets and attributes.545

The raw_data is also further characterized via a series of dimensions scales describing: 1) the identifier of electrodes (e.g.546
linear channel index from DAQ) (electrode_id), 2) the sample time in milliseconds (time_axis), and optionally 3) the anatomical547
name (anatomy_name) and integer id (anatomy_id) of the spatial region where each electrode is located. In addition, the548
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Figure 9. Example HDFView [15] visualization of a BRAINformat file. Left: Tree view of the basic data hierarchy. Right: Table view of a processed ECoG
dataset and curve plot of the first 10 waveforms. Bottom: Summary of properties and attributes of the processed ECoG data array.

BrainDataECoG API provides convenient functions to allow users to easily add custom dimension scales to the data. Dimension549
scales are described by: 1) a data array with the scale’s data, 2) the name of the unit of the data values, 3) a human-readable550
description of the contents of the scale, 4) the name of the scale, and 5) the axis with which the scale is associated. The ability to551
easily generate custom dimension scales enables users to conveniently associate additional descriptions with the data, e.g., scales552
describing the classification of electrodes or time values into unique groups/clusters or to encode the occurrence of different553
events in time, such as, speech events or neural spikes among many others. Dedicated functions for look-up and retrieval of all554
or select dimensions scales—including all auxiliary data, e.g., the units or description of the scale(s)—ease the integration and555
use of dimensions scales for analytics.556

Dimensions scales are limited in that they are one-dimensional in nature—specifically, even though the scale’s dataset may be557
an arbitrary n-dimensional array, the data is strictly associated with a particular dimension of the main dataset—and are not558
well-suited to describe complex structures, such as, multi-level data classifications with overlapping clusters. We, therefore, use559
the /data/internal/ecog_data_#/annotations_# : AnnotationDataGroup module (see Sec. 3.3.2) for storage and management560
of complex data annotations. The anatomical data, e.g., is automatically stored both via a dimension scale as well as annotations561
to facilitate the use of the anatomy in advanced analytics. The BrainDataECoG API also provides a number of convenience562
functions to assist with the interaction with and creation of custom collections of data annotations for the raw_data. Annotations563
play a critical role in advanced analytics based on the classification of the data, e.g., based on the occurrence of events in time564
such as neural spikes or speech events. The definition of speech events in particular depends heavily on the ability to define many565
different types of annotations in conjunction with complex user-defined metadata associated with the annotations. For example,566
speech events occur at a broad range of nested classes, ranging from individual phonemes to syllables, words, and sentences etc..567
The same speech event can occur arbitrary often during the course of an experiment—e.g, patient says ’baa’—and different568
events can overlap—e.g., the sound ’baa’ is part of the words ’bad’. The ability to query annotations to locate particular speech569
events and subsequently analyze the data with such events is critical to the study of neural activity during speech production.570
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Data annotation provides an ideal framework for storage and analysis of many derived classifications of electrical recordings, for571
example to define the occurrence of neural spikes via spike sorting.572

As described earlier, the creation of managed objects is standardized, i.e., to create a new BrainDataECoG managed object573
we simply call the BrainDataECoG.create(...) function. All required data structures are initialized during the creation process,574
ensuring that the data file is always valid. Other, optional structures (e.g, the anatomy) may be saved directly during the creation575
or added later. To ease the use of BrainDataECoG during data acquisition, the create process allows the raw data and associated576
dimension scales to be initialized as empty datasets. As new recordings are acquired over time the raw_data and associated577
dimensions scales are then automatically expanded to accommodate the new data. With this so-called auto-expand-data feature578
enabled we can, for example do the following:579

>>> from brain.dataformat.brainformat import BrainDataFile, BrainDataECoG

>>> import numpy

>>> brainfile = BrainDataFile.create(’testfile.h5’) # Create the file and initialize the data hierarchy

>>> internal_data = brainfile.data().internal() # Get the managed object for storing internal data

>>> ecog_data = BrainDataECoG.create(parent_object=internal_data , # Add to /data/internal

ecog_data_shape=(32,0), # Empty recording for 32 electrodes

ecog_data_type=’f’, # Store float data values

chunks=True) # Store the data using chunking

>>> ecog_data.set_auto_expand(True) # Enable auto expansion

>>> ecog_data[:, 0:1000] = numpy.arange(32*1000).reshape(32,1000) # Add new data

Note when adding the new data, the shape of our ECoG dataset is automatically expanded to 32× 1000 and all one-dimensional580
dimension-scales that are associated with the time axis are automatically expanded to match the new data shape so that we can581
also conveniently update the data of dimension scales without having to resize the datasets manually. As the above example582
illustrates, the BrainDataECoG API provides a convenient interface that allows us to directly interact with the primary raw_data583
via array slicing while auxiliary data, e.g., the sampling rate, layout, annotations etc., can be easily retrieved via corresponding584
access functions or key-based slicing(similar to Python dictionaries).585

4.1.3 Storing Processed ECoG Data586

In practice, ECoG and other temporal voltage recordings across multiple sensors, are often further processed to extract587
specific, fixed-length tokens/features (e.g, phonemes or task trials) from the data. As a result the data is often reorganized as a588
three-dimensional array of space× time× token. The BrainDataECoGProcessed module is derived from BrainDataECoG589
and extends it to support storage of such processed data. Specifically: 1) the primary dataset is extended by a third dimension590
to store the different channels and the dataset is renamed to processed_data, 2) a set of new optional dimension scales are591
specified to describe the frequency_bands, token_id, and token_name. Similar to the anatomy data, token data is stored592
both as dimension scales as well as via metadata-rich, searchable annotations to facilitate data analysis.593

Figure 9 shows an example visualization of a processed ECoG dataset stored using our proposed data format. The tree view594
on the left shows the file structure, including all datasets associated with the /data/internal/ecog_data_processed_# group. The595
table view on the right then shows the contents of the primary processed_data dataset and the curve plot shows the voltage596
signal over time for a select set of tokens/electrodes. The properties view at the bottom then shows the shape, data type, and597
attributes associated with the main dataset.598

5 CONCLUSIONS AND FUTURE WORK

Neuroscience is facing an incredible big data challenge. Efficient and easy-to-use data standards are a critical foundation599
to solving this challenge by enabling efficient storage, management, sharing, and analysis of complex neuroscience data.600
Standardizing neuroscience data is as much about defining common schema and ontologies for organizing and communicating601
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data as it is about defining basic storage layouts for specific data types. Arguably, the focus of a neuroscience-oriented data602
standard should be on addressing the application-centric needs of organizing scientific data and metadata, rather than on603
reinventing file storage and format methods. For the development of BRAINformat we have used HDF5 as the basic storage604
format, because it already satisfies a broad range of the more basic format requirements.605

The complexity and variety of experiments and the diversity of data types and acquisition modalities used in neuroscience606
make the creation of a general, all-encompassing data standard a daunting—if not futile—task. We have introduced the concept607
of Managed Objects (and Managed Types), which—in combination with an easy-to-use, formal format-specification document608
standard and API—enables us to divide & conquer the data standardization problem in a modular and extensible fashion. Format609
components specified using these concepts can be easily reused and extended and the format-compliance of file objects can610
be easily verified using the the BRAINformat library. The format specification API and managed object API implemented in611
BRAINformat are not specific to neuroscience, but define application-independent design concepts that enable us to efficiently612
create application-oriented data format modules. Based on these concepts we have developed an extensible data standard for613
neuroscience data that is portable, scalable, extensible, self-describing, and that supports self-contained (single-file) and modular614
(multiple-linked-files) storage.615

We have also introduced a novel data format module and API for storage and management of advanced data annotations,616
enabling scientists to further characterize and organize data subsets via additional metadata descriptions. Additionally, we617
described the novel concept of relationship attributes for modeling and use of structural and semantic relationships between618
primary storage objects—including advanced index map relationships based on the concept of relationship chains. Although619
these features are available through an API, the data stored in the format is fully specified and human readable, so that domain620
scientists can access the data even without our API. These advanced capabilities fill critical gaps in the portfolio of available tools621
for creating advanced data standards for modern scientific data. The BRAINformat library is open source, has detailed developer622
documentation and user tutorials, and is freely available at: https://bitbucket.org/oruebel/brainformat.623

In our future work we plan to extend the BRAINformat via advanced support for metadata ontology and data type specification624
capabilities and efficient metadata search, as well as expansion of the data annotation modules by supporting additional data625
selection schema and representations. We will develop capabilities to enable linking and interaction with external data stored in626
third-party formats (e.g. movies or images) and will develop additional data modules needed to provide a broader coverage of627
use cases in neuroscience research.628

For concreteness, so far we have focused application of BRAINformat to electrocorticography data collected from neurosurgical629
patients during speech production. At the surface, it may appear that this is a specialization that hinders the general applicability630
of our work to the broader neuroscience community. However, the electrocorticography data shares many requirements with631
standard electrophysiology data collected by the community: storage of voltage recordings over time across multiple spatial632
distributed sensors with heterogenous geometries, complex and multi-tiered task descriptions, post-hoc processing of raw data633
to extract the signal of interest, the association of physiology data with multi-modal data streams collected simultaneously634
by other devices, the linkage of data associated with the same ’task’ across multiple sessions, and the necessity to store rich635
meta-data to make sense of it all. Use of our format as input to popular spike-sorting algorithms, such as KlustaKwik [7], should636
be straightforward. Importantly, the utilization of metadata-rich Annotations are a natural way to encode the occurrence of637
spikes and associated parameters in the context of the original data, while relationship attributes provide an ideal foundation for638
recording relationships between analytics and other data. Therefore, application of BRAINformat to physiology data collected639
in model species during standard sensory, motor, and cognitive neuroscience tasks should be straightforward. Indeed, this has640
been our goal all along.641
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August 11, 2015

Contents

1 Basic Setup 1

2 Overview 2
2.1 Creating a new RelationshipAttribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Creating a Relationship: Step-by-Step . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Creating a Relationship: The Shortcut . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Using Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Relationship Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Types of relationships and their uses 6
3.1 Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Equivilant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Shared Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Shared Ascending Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6 Indexes Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7 User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Relationship Chains 11
4.1 Index Map Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 Creating Index Map Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.2 Interacting with Index Map Relationships . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Other Relationship Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1 Basic Setup

This section contains code for the basic setup of this tutorial.

In [1]: # Import basic packages needed for this notebook

import sys

import numpy as np

from scipy.ndimage import zoom as image_zoom

import h5py

from IPython.display import Image

from tempfile import NamedTemporaryFile

try:

%matplotlib inline

import matplotlib

import matplotlib.pyplot as plt

HAS_PLT = True

except:
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HAS_PLT = False

# If the brain lib is not installed in your default path then set the path to it

sys.path.append("/Users/oruebel/Devel/BrainFormat")

# Import the classes related to the management of relationships

from brain.dataformat.spec import RelationshipTargetSpec, RelationshipSpec, BaseSpec

from brain.dataformat.base import RelationshipAttribute

In [2]: # Create a temporaryr HDF5 file for testing

tempfile = NamedTemporaryFile()

test_file = h5py.File(tempfile.name, ’a’)

In [3]: # Create some simple example datasets in our temporary file for testing

test_file[’t1’] = np.arange(10)

test_file[’t2’] = np.arange(10) + 10

test_file[’t3’] = np.arange(10) + 5.1

test_file[’t2d_1’] = np.arange(100).reshape((10,10))

test_file[’t2d_2’] = np.arange(100).reshape((10,10)) + 10

# Assign the datasets to variables

t1 = test_file[’t1’]

t2 = test_file[’t2’]

t3 = test_file[’t3’]

t2d_1 = test_file[’t2d_1’]

t2d_2 = test_file[’t2d_2’]

2 Overview

The concept of relationships describes an extension of the HDF5 primitives to enable us to describe relation-
ships between objects (i.e., Groups and Datasets) in HDF5 files. The description of relationships is based
on two basic concepts: 1) the formal specification of relationships and 2) a standard for storing relationship
specifications as HDF5 attributes.

Specification Relationships are described in Python via JSON serializable dictionaries that describe the
source, target, type, description, and storage properties of the relationship (see below for details). The
BRAINformat library provides the following main classes to help with the specification of relationships:

• RelationshipTargetSpec : Define a dictionary describing the target of the relationship

• RelationshipSpec : Define a dictionary with the complete specification of the relationship

Storage Relationships are described via a formal specification and stored in HDF5 as attributes. The
BRAIN library prepends RELATIONSHIP ATTR to the attribute name to help with the identification of at-
tributes that define relationships. The specification of relationships is typically stored as a JSON string
in HDF5. The use of JSON is primarily a choice of convenience. Alternatively, one could also use an
HDF5 compound dataset to store relationship specifications. While the use of a compound dataset has
advantages—mainly that it relies only on HDF5 primitives—and is not hard to do in Python, the use of
changing compound datatypes can be tricky in other (typed) languages. The BRAINformat library provides
the following main classes to help with the interaction with relationships stored in HDF5:

• RelationshipAttribute : Store, retrieve, and resolve relationships described in HDF5

2.1 Creating a new RelationshipAttribute

In this example we will create a relationship between t1 and t2 that says that the objects in t1 are ordered
the same way as the objects in t2.

2
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A relationship consists of a source, target, and definition of the relationship. The source of a relationship
is defined simply by the dataset (or group) that the Relationship Attribute (that describes the relationship)
is assigned to. We may define an optional axis to describe, which dimension the relationship is associated
with.

The target is defined via a RelationshipTargetSpec specification, describing how we can get from the
source to the target object.

The actual function of the relationship is then mainly defined by the relationship type.

2.1.1 Creating a Relationship: Step-by-Step

Specifying the target via a RelationshipTargetSpec First, we need to create a description of the
target we are pointing to, i.e., how do we get from t1 to t2. Since we know t1 and t2, we can use the
convenient function from objects(...) provided by the RelationshipTargetSpec class to easily create
this description.

In [4]: target_spec_t1_to_t2 = RelationshipTargetSpec.from_objects(source_object=t1,

target_object=t2)

Let’s see what the description of the target specification looks like. Since RelationshipTargetSpec inherits
from BaseSpec we can easily convert the specificaiton to/from JSON.

In [5]: print target_spec_t1_to_t2.to_json(pretty=True)

{
"axis": null,

"dataset": "t2",

"filename": null,

"global path": null,

"group": null,

"prefix": null

}

t2 and t1 are both located in the same parent group so the description simply contains
the name of t2. We could have naturally also created the same specification ourselves via
RelationshipTargetSpec(dataset='t2', group=None, prefix=None) but if we know the HDF5 objects
we want to relate, then using from objects(...) is usally simpler.

Specifying a relationship via a RelationshipSpec Second, now that we have a description of our
target we can go ahead and specify our relationship.

In [6]: rel_spec_t1_to_t2 = RelationshipSpec(attribute=’rel_t2’,

target=target_spec_t1_to_t2,

relationship_type=’order’,

description=’Test relationship’)

# attribute : Name of the attribute we want to use to store the relationship

# target : The specification of our target

# relationship_type : How are the datasets related with each other

# description : Human-readable description of the relationship

Saving a relationship via a RelationshipAttribute Finally, we need to save our relationship to file
by creating a new RelationshipAttribute. As usual, we provide a create function for this purpose.

In [7]: rel1 = RelationshipAttribute.create(

parent_object=t1, # The source of the relationship

relationship=rel_spec_t1_to_t2) # The specification of the relationship

3
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To confirm that we indeed now have a new attribute on t1, let’s have a look at all attributes:

In [8]: for attr_name, attr_value in t1.attrs.iteritems():

print attr_name

print BaseSpec.from_json(attr_value).to_json(pretty=True) # Just to prettyfy the print

print ""

RELATIONSHIP ATTR rel t2

{
"attribute": "rel t2",

"axis": null,

"description": "Test relationship",

"optional": false,

"prefix": null,

"properties": null,

"relationship type": "order",

"target": {
"axis": null,

"dataset": "t2",

"filename": null,

"global path": null,

"group": null,

"prefix": null

}
}

As we can see, we now have a new relationship attribute. The BRAIN library prepended the
RELATIONSHIP ATTR to help with the identification of attributes that define relationships. The descrip-
tions is typically stored as JSON. One could also use an HDF5 compound dataset to describe a relationship.
While the use of a compound dataset has many advantages—we stay in HDF5, more compact etc.—and is
not hard to do in Python, the use of changing compound datatypes can be tricky in other languages.

2.1.2 Creating a Relationship: The Shortcut

Instead of constructing the specification of the target and the relationship and then crating the
RelationshipAttribute, we can use the RelationshipAttribute.create(...) function to conveniently
create everything in one shot:

In [9]: rel_temp = RelationshipAttribute.create(parent_object=t1,

target_object=t2,

attribute=’rel_temp_to_t2’,

relationship_type=’order’,

description=’Test relationship’)

print rel_temp.relationship_spec.to_json(pretty=True) # Print for validation purposes

{
"attribute": "rel temp to t2",

"axis": null,

"description": "Test relationship",

"optional": false,

"prefix": null,

"properties": null,

"relationship type": "order",

"target": {
"axis": null,

"dataset": "t2",

4
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"filename": null,

"global path": null,

"group": null,

"prefix": null

}
}

2.2 Using Relationships

We can use the RelationshipAttribute class (and instances thereof) to directly interact with relationships.

In [10]: source = rel1.source # Get the source of the relationship (here, t1)

source_axis = rel1.source_axis # Get the axis to which the relationship applies

target = rel1.target # Get the target of the relationship (here, t2)

target_axis = rel1.target_axis # Get the axis on the target of the relationship

rtype = rel1.relationship_type # Get the type of the relationship

rspec = rel1.relationship_spec # Get RelationshipSpec with relationship’s specification

tspec = rel1.target_spec # Get RelationshipTargetSpec with the sepc of the target

# Alternatively we could also get the target spec from

# our RelationshipSpec via:

# >>> tspec = rspec[’target’]

print "(Source, Axis) = (" + str(source) + ", " + str(source_axis) + ")"

print "(Target, Axis) = (" + str(target) + ", " + str(target_axis) + ")"

print "Relationship Type = " + str(rtype)

# We here call to_json(True) simply to make the output easier to read

print "Relationship Specification " + rspec.to_json(pretty=True)

(Source, Axis) = (<HDF5 dataset "t1": shape (10,), type "<i8">, None)

(Target, Axis) = (<HDF5 dataset "t2": shape (10,), type "<i8">, None)

Relationship Type = order

Relationship Specification {
"attribute": "rel t2",

"axis": null,

"description": "Test relationship",

"optional": false,

"prefix": null,

"properties": null,

"relationship type": "order",

"target": {
"axis": null,

"dataset": "t2",

"filename": null,

"global path": null,

"group": null,

"prefix": null

}
}

2.2.1 Relationship Slicing

For many standard relationship types, the RelationshipAttribute API also supports slicing to map selec-
tions defined on the source to the target. The RelationshipAttribute API maps the selection but it is
up to the user to apply the selection to the target to load data if desired. When loading data from the the
target we need to consider the target axis if set.

5
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In [11]: # Loading data from the relationship’s source, i.e, t1

temp_data = rel1.source[0:3]

print "Loading t1[0:3]: " + str(temp_data)

# We can map slicing operations from the source to the

# target by slicing into the relationship

temp_data = rel1[0:3]

print "Mapping [0:3] to the target: " + str(temp_data)

# We can now use the mapped slice to directly access

# data in the target, i.e., t2

temp_data = rel1.target[rel1[0:3]]

print "Loading t2[0:3] via the relationship: " + str(temp_data)

Loading t1[0:3]: [0 1 2]

Mapping [0:3] to the target: slice(0, 3, None)

Loading t2[0:3] via the relationship: [10 11 12]

3 Types of relationships and their uses

3.1 Order

Type: order

Description:
Typical use case:
Slicing: order selections datasets can be directly mapped between two datasets without the need for

complex data processing, i.e., the selection given for the source is identical to what we need to do for the
target. The RelationshipAttribute API supports this mapping directly. order relationship are usually
used between datasets since objects in a Group (i.e., HDF5 group) don’t have a predefined order. The
RelationshipAttribute API supports order relationships between Groups by assuming that keys in the
groups are sorted alphabetically and maps selections (typically names of objects or indexes/slices into the
ordered list of keys) accordingly. The RelationshipAttribute API currently does not support mapping
order selections between datasets and groups (which are expected to be not very common).

Example
See example above

3.2 Equivilant

Type: equivalent

Description: In addition to order, this relationship type expresses that the source and target object
encode the same data (even if they might store different values). This relationship also implies that the
source and target contain the same number of values ordered in the same fashion.

Typical use case: Any time the same data is stored multiple times with different encodings, e.g., a user
may store a dataset of strings with the names of tokens and store another dataset with the integer ID of the
tokens. This is often useful to ease data processing, e.g., while IDs may be better suited for data processing,
string names may be better suited for human interpretation.

Slicing: Same as for order.
Example See order example above

3.3 Shared Encoding

Type: shared encoding

Description: The target and source contain values with the same encoding, i.e., values can be directly
compared. The specification of a target axis usually does not make sense for this type of relationship as
this relationship refers directly to the values of datasets not their axes.
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Typical use case: Generally any time two objects (datasets or groups) contain data with the same
encoding, i.e., values or names that can be directly compared via == (and < , > in the case of datasets).
Imaging, e.g, the case where we have two datasets with dimension scales that demark regions where a patient
performed a particular task.

Slicing: The RelationshipAttribute API supports slicing for shared encoding relationships as fol-
lows. We assume that we want to locate the same values int target as in the source. As such we will load
the requested data from the source and then locate all values in target that are equal to at least one of
the loaded values.

Example: In the below example we create an example shared encoding relationship between the 1D
dataset t1 and the 2D dataset t2d 1. As we can see the slice defined on the source is translated to a boolean
map indicating the corresponding values in the target dataset.

In [12]: rel_se_1 = RelationshipAttribute.create(parent_object=t1,

target_object=t2d_1,

attribute=’rel_t2d_1’,

relationship_type=’shared_encoding’,

description=’test relationship’)

In [13]: print ’Selected data in the source dataset: ’ + str(rel_se_1.source[1:9])

mapped_selection = rel_se_1[1:9]

print ’Selected data in the target dataset: ’ + str(rel_se_1.target[mapped_selection])

print ’Mapping the selection [1:9] from the 1D source to the 2D target’

if HAS_PLT:

plt.imshow(mapped_selection, interpolation=’nearest’)

else:

print mapped_selection

Selected data in the source dataset: [1 2 3 4 5 6 7 8]

Selected data in the target dataset: [1 2 3 4 5 6 7 8]

Mapping the selection [1:9] from the 1D source to the 2D target

7
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3.4 Shared Ascending Encoding

Type: shared ascending encoding

Description: The target and source contain values with the same encoding, i.e., values in the two
datasetscan be directly compared. In addition, values are expected to be in ascending order. An example
would be a 1D time dimension for two different datasets that are synchronized to a global clock. The
specification of a target axis usually does not make sense for this type of relationship as this relationship
refers directly to the values of datasets not their axes.

Typical use case: Relate ordered dimensions, e.g., time axis
Slicing: The RelationshipAttribute API supports slicing for shared ascending encoding as follows:

1. In the general case, the shared ascending encoding behaves exactly like the the shared encoding

2. In the special case, however, where i) the source and target are 1D datasets and ii) a pure range
selection is performed (i.e., a single slice with just a start and stop but no step) the range of the slice
is mapped from the source to the target (rather than equals). This is useful, e.g., in the case where we
have a time axis and we want to locate a time-frame rather than exact matching values between two
datasets. NOTE: If we want to ensure that behavior 1. is always used, then we can simply define a
step for slice, i.e., instead of [0:10] we can instead write [0:10:1].

Example:

In [14]: # Here we are creating a new relationship between t1 and t3

# with the type shared_ascending_encoding

rel2 = RelationshipAttribute.create(parent_object=t1,

target_object=t3,

attribute=’rel_t3’,

relationship_type=’shared_ascending_encoding’,

description=’Test relationship’)

In [15]: # We next here show how we can use the relationship to slice into the data

print "Source data all: " + str(rel2.source[:])

print "Target data all: " + str(rel2.target[:])

print "Source selecton: " + str(np.s_[2:9])

print "Selected source data: " + str(rel2.source[2:9])

print "Mapped seleciton: " + str(rel2[2:9])

print "Selected target data: " + str(rel2.target[rel2[2:9]])

Source data all: [0 1 2 3 4 5 6 7 8 9]

Target data all: [ 5.1 6.1 7.1 8.1 9.1 10.1 11.1 12.1 13.1 14.1]

Source selecton: slice(2, 9, None)

Selected source data: [2 3 4 5 6 7 8]

Mapped seleciton: slice(0, 3, None)

Selected target data: [ 5.1 6.1 7.1]

In the above example we selected the range [2:9] from dataset t1 (i.e. the source), which are the values
[2 3 4 5 6 7 8]. The target dataset t3, however, contains only the values [5.1 6.1 7.1 8.1 9.1 10.1

11.1 12.1 13.1 14.1]. When mapping the value range (2 to 8) to the target we, hence, retrieve less values,
specifically [5.1 6.1 7.1].

As mentioned above, we can force to use an equals comparison when mapping the selection by defining
the step parameter of the slice, which in this case will result in no values being selected as none of the values
match exactly:

In [16]: # Now lets see what happens if don’t sl

mapped_selection = rel2[2:9:1]

print "Mapped selection (using equals): " + str(mapped_selection)

print "Total values selected in target: " + str(mapped_selection.sum())

Mapped selection (using equals): [False False False False False False False False False False]

Total values selected in target: 0
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3.5 Indexes

Type: indexes

Description: The source dataset contains indices into the target dataset. These are often integer
indices, however, e.g, if the relationship points to a Group, then the source dataset may also contain strings
selecting the objects stored in the Group. The source of such a relationship, however, should always be a
dataset.

Typical use case: A typical use is to describe basic data structures, e.g., we may store a list of unique
tokens and a larger array that stores integer indicies into the list of tokens.

Slicing: The RelationshipAttribute API maps slicing operations by retrieving the indices from the
source dataset and returing a list of the indicies. NOTE: in case that the target is a Group, we may need to
iterate over the returned selection as h5py.Group objects do not support simultaneous selection of multiple
objects.

1D Example

In [17]: # First, let’s create some new datasets

test_file[’token_names’] = np.asarray([’aah’, ’bee’, ’cat’, ’bat’, ’fat’])

test_file[’token_ids’] = np.random.randint(0, 5, 20) # Indicies into the token_names array

token_names = test_file[’token_names’]

token_ids = test_file[’token_ids’]

In [18]: # Here just a quick example of how one would use this sort of strucutre in practice

print "Token IDs: " + str(token_ids[:])

print "Mapped Token IDs: " + str(token_names[:][token_ids[:]])

Token IDs: [1 2 3 0 3 0 2 2 4 1 2 3 0 4 1 0 3 4 2 4]

Mapped Token IDs: [’bee’ ’cat’ ’bat’ ’aah’ ’bat’ ’aah’ ’cat’ ’cat’ ’fat’ ’bee’ ’cat’ ’bat’

’aah’ ’fat’ ’bee’ ’aah’ ’bat’ ’fat’ ’cat’ ’fat’]

In [19]: # To make the relationship between the datasets explicit we create a

# RelationshipAttribute, which describes that token_ids indexes token_names

rel_i_1 = RelationshipAttribute.create(parent_object=token_ids,

target_object=token_names,

attribute=’rel_index_target’,

relationship_type=’indexes’,

description=’token_ids indexes token_names’)

In [20]: # Now we can use the relationship to transparently perform the mapping from

# the token_ids arrays to the token_names without having to know the datasets

target_data = rel_i_1.target[:] # Here we load the target data into memory

# because h5py.Dataset does not slicing with

# out of order index lists, but numpy does

print target_data[rel_i_1[10:20]]

[’cat’ ’bat’ ’aah’ ’fat’ ’bee’ ’aah’ ’bat’ ’fat’ ’cat’ ’fat’]

Exampled: 2D

In [21]: # In this example we will show how we can do something similar but where

# the target is a multi-dimensional array

test_file[’matrix_data’] = np.arange(100).reshape(10,10)

temp_index = np.random.randint(0, 5, size=(2,20))

test_file[’matrix_index’] = temp_index # Indicies into the matrix_data dateaset

matrix_data = test_file[’matrix_data’]

matrix_index = test_file[’matrix_index’]
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In [22]: # To make the relationship between the datasets explicit we create a

# RelationshipAttribute, which describes that matrix_index indexes matrix_data

rel_i_2 = RelationshipAttribute.create(parent_object=matrix_index,

target_object=matrix_data,

attribute=’rel_index_target_2D’,

relationship_type=’indexes’,

axis=0,

description=’matrix_index indexes matrix_data’)

Alternatively we could also set to:
axis={'INDEXING AXIS':0, 'STACK AXIS':None}
instead of axis=0. In either case the above indicates that we have multi-dimensional indicies where the

first dimenions is used to store the two-dimenionsal indicies, while the remaining dimenions are the intrinsic
dimenions of the matrix index dataset itself (whatever they may be).

In [23]: # Mapping the selection from matrix_index to the matrix_data

mapped_selection = rel_i_2[1:10]

# Printing the resulats of the mapping

print "Mapped Selection: (shape=" + str(mapped_selection.shape) + ")"

print mapped_selection

# Applying the multi-dimensional selection

selected_matrix_data = matrix_data[:][ mapped_selection[0,:] , mapped_selection[1,:] ]

# h5py.Dataset does not support complex multi-dimensional selection but numpy does.

# For convenience we load the full matrix_data[:] first and then apply the selection

# but we could also iterate over the selection to load one element at-a-time.

print "Selected Data:"

print selected_matrix_data

Mapped Selection: (shape=(2, 9))

[[4 4 2 2 0 2 2 3 1]

[1 0 3 3 2 1 1 1 0]]

Selected Data:

[41 40 23 23 2 21 21 31 10]

In the above example we used an index dataset temp index of shape (2,20), i.e, we ordered the indicies
we select along the 2nd (i.e., last dimension). Depending on preference we may also order selections along
the first dimension, in which case the data load would have changed to:

selected matrix data = matrix data[:][ mapped selection[. . . , 0] , mapped selection[. . . , 1]
]

We can determine which notation we need to use by looking at the value of rel i 2.source axis, which
in the above example is 0 — i.e., rel i 2.source axis identifies the first axis of the source dataset as the
axis that describes the components of the indices, which we can easily check:

In [24]: rel_i_2.source_axis == 0

Out[24]: True

3.6 Indexes Values

Type: indexes values

Description: The source selects certain parts of the target based on the values (or keys in case of
group(s)) in the target. Specification of an axis for the target usually does not make sense for this type of
relationship. The indexes values relationship implies that the datasets use a shared encoding (see above)
and is effectively a special type of shared encoding relationship that beyond the encoding describes that
the source is selecting data in the target based on value.

Typical use case: Value-based referencing of data
Slicing: The RelationshipAttribute API supports slicing for indexes values relationships as follows:
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• Source/Target are datasets: Map the given selection via: target[:] ==

self.source[selection]

• Source is dataset and target is group: Retrieve the selected keys from the source via:
self.source[source selection]

• Source/Target arge groups: Both groups contain objects (groups/datasets) with the same names.
The mapping of a given selection is, hence, trivial and is the selection itself.

• Source is group and target is dataset: Map the given selection via: self.target[:] ==

selection

3.7 User

Type: user

Description: Arbitrary user-defined relationship.
Typical use case: Any time a user needs to express a semantic relationship that does not match any

of the other supported relationship types.
Slicing: No particular slicing support is implemented for this type.

4 Relationship Chains

Describing relationships between individual objects can be used as a tool to describe more complex relation-
ships between data objects, e.g., relationships that are based on complex mappings between data objects. In
practice we can describe such relationships via a chain of relationships. A common type of such a complex
chain relationship are what we here refer to as index map relationships.

4.1 Index Map Relationships

Lets look at the following example. Imagine we have taken two different images A and B of a particualr brain
at different resolutions or even from different imaging modalities. We now want to analyze our two images
in context of each other. This mean when accessing a set of pixels in image A we now want to access the
corresponding pixels in image B (and vice versa). This seamingly simple task, however, is in practice highly
complex. Even if our images are perfectly aligned, a user still has to know exactly: i) how the two datasets
are related, ii) how to utilize the information from the registration process to map between A and B, and iii)
write complex code to access the data.

Using relationships we can i) make this process explicit by describing the relationship between A and B

and ii) greatly simplify the process for interacting with the data. Rather than describing the relationship
between A and B directly we can create a map dataset map A to B, which stores for each pixel of A the
corresponding (x,y) pixel index in B. Accordingly we can also create a corresponding map map B to A to
model the reverse relationship between B and A. These maps explicitly describe the relationship between our
images A and B so that a user can directly utilize the mappings without having to perform complex and
error-prone index transformation (which would be needed if we described the mapping via scaling, rotation,
morphing and other data transformation).

Using RelationshipAttributes we can describe this complex relatioship between our images as follows:

• Mapping between A and B

A <----order---- map_A_to_B ----indexes----> B

\ /

\-----order---->/

• Mapping between B and A

A <----indexes---- map_B_to_A ----order----> B

\ /

\<----order-----/
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Here, A, B, map A to B, map B to A are datasets and <--, --> describe RelationshipAttributes of
the indicated type. In practice one would often also add a user relationship between A and B to document
the specific semantic relationship between the two datasets, e.g:

A <----order---- map_A_to_B ----indexes----> B

\ / /

\-----order---->/ /

\ /

\---------------user---------------->/

While index map relationships may seem complicated, the BRAINformat API provides a series of convient
functions, which greatly simplify the us of these kinds of index map relationships in practice; in particular:

• RelationshipAttribute.create index map relationship(...) conveniently creates for us all rela-
tionship required to define the index map relationshiph

• RelationshipAttribute.get index map relationship names(...) generates a list of all unique
names of index map relationships.

• RelationshipAttribute.get index map relationship(...) retrieves all relationships that belong
to a particular index map relationship.

• RelationshipAttribute.INDEX MAP RELATIONSHIP POSTFIX Is a python dictionary describing the
standard postfixs used to identify the four relationships used to model the index map relationship,
i.e., the mandatory MAP TO TARGET, MAP TO SOURCE, SOURCE TO MAP and to options SOURCE TO TARGET

relationship. The postfix values are used by the API to locate and retrieve index map relationships.

• RelationshipAttribute.RELATIONSHIP ATTRIBUTE PREFIX As for all Relationship Attributes, this
prefix is used to indicate that the different attributes describe regular relationships.

• RelationshipAttribute.source and RelationshipAttribute.target attributes allow us to easily
and transparently locate the source and target of relationships without having to know the name
and location of datasets

• RelationshipAttribute. getitem allows us to easily perform the mapping of selections using a
relationship

4.1.1 Creating Index Map Relationships

Using the functionality described above we can manually create index map type relationships fairly easily,
simply by creating the individual order, indexes, and user relationships. To ease and help standardize
the creation of such relationships in practice, the RelationshipAttribute API provides the convenient
shortcut function RelationshipAttribute.create index map relationship(...), which creates all the
required relationships specifications and relationship attributes for us.

Create two example image datasets

In [25]: # Source Image: 2x2 image where each pixel is the pixel index

s_x, s_y = 2, 2 # Size of the source image in x and y

source_image_data = np.arange(s_x * s_y).reshape(s_x, s_y)

test_file[’image1’] = source_image_data

source_image = test_file[’image1’]

# Target Image: 4x4 image scaled up from the source, i.e.,

# 4 pixel in the target correspond to 1 pixel in the source

target_image_data = image_zoom(source_image, 2, order=0)

test_file[’image2’] = target_image_data

target_image = test_file[’image2’]
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Create the mappings between image1 and image2 Since our target is an up-sampled version of our
source image we have for each (x,y) pixel in the source image 4 corresponding pixels in the target image.
This means our map must have four dimensions:

1. The first dimension is the X dimension of the image

2. The second dimension is the Y dimensions of the image

3. The third dimension is used to express the (x,y) index of a pixel. We refer to this axis as the
INDEXING AXIS.

4. The fourth dimension is used to store the stack if pixels. We refer to this axis as the STACK AXIS.

When defining the map, the main restriction is that the intrinsic dimenions of the data (i.e., X and
Y) appear in the same order in the map as they are defined in the source dataset. However, we can use
arbitrary dimensions for our INDEXING AXIS and STACK AXIS. In practice the INDEXING AXIS and STACK AXIS

(if needed) appear either as the first or last dimensions of the map dataset. However, this is not mandatory
and we may chose any dimensions as our INDEXING AXIS and STACK AXIS as long a we do not alter the
relative ordering or the axis of our map dataset relative to our source dataset.

In [26]: map_source_to_target_data = np.zeros(shape=(s_x, s_y, 2, 4), dtype=’uint16’)

for xi in range(s_x):

for yi in range(s_y):

map_source_to_target_data[xi, yi, :, :] = \

np.nonzero(target_image_data==source_image_data[xi,yi])

test_file[’map_image1_to_image2’] = map_source_to_target_data

map_source_to_target = test_file[’map_image1_to_image2’]

# Since our images are pixel indicies, the map of the target to source is simply

# identical to our target image

test_file[’map_image2_to_image1’] = target_image_data

map_target_to_source = test_file[’map_image2_to_image1’]

Print the image data and maps:

In [27]: print "Source Image:"

if HAS_PLT:

ax = plt.imshow(source_image_data, interpolation=’nearest’)

plt.grid(True, linestyle=’--’, linewidth=2)

print source_image_data

Source Image:

[[0 1]

[2 3]]
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In [28]: print "Target Image: (this is also the map from the target to the source)"

if HAS_PLT:

ax = plt.imshow(target_image_data, interpolation=’nearest’)

plt.grid(True, linestyle=’--’, linewidth=2)

print target_image_data

Target Image: (this is also the map from the target to the source)

[[0 0 1 1]

[0 0 1 1]

[2 2 3 3]

[2 2 3 3]]
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In [29]: print "Map of the Source to the Target:"

print map_source_to_target_data

print ""

print "Each pixel in the source maps to four pixels in the target. "

print "E.g, Pixel (0,0) maps to:"

print map_source_to_target[0,0,...]

Map of the Source to the Target:

[[[[0 0 1 1]

[0 1 0 1]]

[[0 0 1 1]

[2 3 2 3]]]

[[[2 2 3 3]

[0 1 0 1]]

[[2 2 3 3]

[2 3 2 3]]]]

Each pixel in the source maps to four pixels in the target.

E.g, Pixel (0,0) maps to:

[[0 0 1 1]

[0 1 0 1]]

Creating the Index Map Relationship for our Example Image Data

In [30]: mapping_relationships = RelationshipAttribute.create_index_map_relationship(

name=’upsampled_image_relationship’,
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map_object=map_source_to_target,

source_object=source_image,

target_object=target_image,

map_indexing_axis=2, # the 3rd dimension idenifies our indicies

map_stack_axis=3) # the 4th dimension has the stack of pixels we relate to

That’s all. Optionally we could have also specified a user description and/or use properties to also
generate a user relationship between the two images. We could have also added mapping properties to
further describe the mapping we performed in further detail. We here left the source axis and target axis

paremeters set to None as the relationship refers to the whole source and target datasets.
We can now, naturally, as easily create the index map relationship to also capture the inverse relationship

from image2 to image1:

In [31]: mapping_relationships_2 = RelationshipAttribute.create_index_map_relationship(

name=’downsampled_image_relationship’,

map_object=map_target_to_source,

source_object=target_image,

target_object=source_image)

# Our map contains direct indicies and has no additional dimension,

#so we don’t need the mp_indexing_axis and mapt_stack_axsi

This simple strategy makes the relationship between our images fully explicit so that anyone—without
any prior knowledge—can discover and utilize our two images in conjunction. Before we show next, how we
can use our relationship to easily interact with our two images, let’s have a look at the individual relationships
that we just created:

map image1 to image2 -----indexes----> image2

In [32]: print mapping_relationships[0].relationship_spec.to_json(pretty=True)

{
"attribute": "upsampled image relationship IMR MAP TO TARGET",

"axis": {
"INDEXING AXIS": 2,

"STACK AXIS": 3

},
"description": "The source defines a map from /image1to the target of this relationship",

"optional": false,

"prefix": null,

"properties": null,

"relationship type": "indexes",

"target": {
"axis": null,

"dataset": "image2",

"filename": null,

"global path": null,

"group": null,

"prefix": null

}
}

map image1 to image2 -----order----> image1

In [33]: print mapping_relationships[1].relationship_spec.to_json(pretty=True)

{
"attribute": "upsampled image relationship IMR MAP TO SOURCE",
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"axis": [

0,

1

],

"description": "The source defines a map from the target of this relationship to/image2",

"optional": false,

"prefix": null,

"properties": null,

"relationship type": "order",

"target": {
"axis": null,

"dataset": "image1",

"filename": null,

"global path": null,

"group": null,

"prefix": null

}
}

image1 -----order----> map image1 to image2

In [34]: print mapping_relationships[2].relationship_spec.to_json(pretty=True)

{
"attribute": "upsampled image relationship IMR SOURCE TO MAP",

"axis": null,

"description": "The target of this relationship defined a mapfrom the source of this relationship to/image2",

"optional": false,

"prefix": null,

"properties": null,

"relationship type": "order",

"target": {
"axis": null,

"dataset": "map image1 to image2",

"filename": null,

"global path": null,

"group": null,

"prefix": null

}
}

source -----user----> target

In [35]: if mapping_relationships[3] is not None:

print mapping_relationships[3].relationship_spec.to_json(pretty=True)

else:

print "No user relationship has been defined"

No user relationship has been defined

4.1.2 Interacting with Index Map Relationships

While index map relationships are quite complex, interacting with index map relationships is in practice
fairly easy as we can use the relationships defined on our map dataset to interact with our source and
target datasets. E.g.:
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1. We can use our map dataset map image1 to image2 to locate: i) R1; the indexes relationship to B
and ii) R2, the order relationship to A

2. If we now want to slice into B we can use R1 to select elements in B

3. If we want to slice into A we can use R2 to select in A (or in many cases, if no axis are specified, we can
also just slice into A since we have an order relationship between A and map A to B.

Retrieving Index Map Relationships

In [36]: #1.1) Locate the map dataset

map_source_to_target = test_file[’map_image1_to_image2’]

#1.2) Locate the indexes relationship from our map to our target (i.e, ‘image2‘)

r1 = mapping_relationships[0]

#1.3) Locate the order relationship from our map to our source (i.e, ‘image1‘)

r2 = mapping_relationships[1]

Since we already have our relationships we were able to just access them directly. But the
RelationshipAttribute API also provides us with a series of convenience functions to help us locate the
appropriate attributes, in particular:

• RelationshipAttribute.get index map relationship name(...) : Get a list of all unique names
of index map relationships

• RelationshipAttriute.get index map relationship(...) : Get a dict of all relationships that
define the index map relationship

In [37]: # Get the list of names of all index map relationships

imr_names = RelationshipAttribute.get_index_map_relationship_names(

parent_object=map_source_to_target)

# Get the ’upsampled_image_relationship’ relationship

imr1 = RelationshipAttribute.get_index_map_relationship(

parent_object=map_source_to_target,

relationship_name=’upsampled_image_relationship’)

# Print the results for validation

print "Index map relationship names: " + str(imr_names)

print ""

print "Index map relationship attributes for ’upsampled_image_relationship’:"

for i, j in imr1.iteritems():

print (i, j)

Index map relationship names: [u’upsampled image relationship’]

Index map relationship attributes for ’upsampled image relationship’:

(’SOURCE TO MAP’, <brain.dataformat.base.RelationshipAttribute object at 0x106331290>)

(’MAP TO SOURCE’, <brain.dataformat.base.RelationshipAttribute object at 0x106331590>)

(’SOURCE TO TARGET’, None)

(’MAP TO TARGET’, <brain.dataformat.base.RelationshipAttribute object at 0x106331450>)

Above we used the map dataset map source to target to look up the index map relationship, but we
can equally well also retrieve the same information from the source dataset source image:

In [38]: # Get the list of names of all index map relationships

imr_names = RelationshipAttribute.get_index_map_relationship_names(

parent_object=source_image)

# Get the ’upsampled_image_relationship’ relationship
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Oliver Rübe et al. Supplementary Material

1942



imr1 = RelationshipAttribute.get_index_map_relationship(

parent_object=source_image,

relationship_name=’upsampled_image_relationship’)

# Print the results for validation

print "Index map relationship names: " + str(imr_names)

print ""

print "Index map relationship attributes for ’upsampled_image_relationship’:"

for i, j in imr1.iteritems():

print (i, j)

Index map relationship names: [u’upsampled image relationship’]

Index map relationship attributes for ’upsampled image relationship’:

(’SOURCE TO MAP’, <brain.dataformat.base.RelationshipAttribute object at 0x1062208d0>)

(’MAP TO SOURCE’, <brain.dataformat.base.RelationshipAttribute object at 0x1062207d0>)

(’SOURCE TO TARGET’, None)

(’MAP TO TARGET’, <brain.dataformat.base.RelationshipAttribute object at 0x106220890>)

In general, relationships are directional, pointing from a particular source to a target. As such, we
can easily look up all relationships with a given object as the source. However, unless we explicitly de-
fine also inverse relationships—e.g, in addition to A---indexes--->B we would also have a relationship
A<-----indexed by-----B—we cannot directly look up relationships that point to a given object.

In the case of index map relationships this means that we can easily answer the question of “Which
objects do I map to?” but answering the question of “Which objects map to me?” is more complex (i.e, we
would need to iterate through all possible objects to look up all relationships to see if we are the target).

Using Index Map Relationships to Locate the Source, Target, and Map Now that we have
retrieved our index map relationship we can use the relatioship to interact with our data.

Locate the source and target and map object of our relationship:

In [39]: imr1_source = imr1[’MAP_TO_SOURCE’].target

imr1_target = imr1[’MAP_TO_TARGET’].target

imr1_map = imr1[’MAP_TO_SOURCE’].source

# NOTE:

# ‘imr1[’MAP_TO_SOURCE’].target‘ is equivalent to ‘imr1[’SOUCE_TO_MAP’].source‘

# ‘imr1[’MAP_TO_TARGET’].target‘ is equivalent to imr1[’SOURCE_TO_TARGET’].target (if exists)

# ‘imr1[’MAP_TO_SOURCE’].source‘ is equivalent to imr1[’MAP_TO_TARGET’].source

Just to show that we in fact did locate the correct data, lets print it again:

In [40]: print "Source Image:"

if HAS_PLT:

ax = plt.imshow(source_image_data, interpolation=’nearest’)

plt.grid(True, linestyle=’--’, linewidth=2)

print source_image_data

Source Image:

[[0 1]

[2 3]]
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In [41]: print "Target Image: (this is also the map from the target to the source)"

if HAS_PLT:

ax = plt.imshow(target_image_data, interpolation=’nearest’)

plt.grid(True, linestyle=’--’, linewidth=2)

print target_image_data

Target Image: (this is also the map from the target to the source)

[[0 0 1 1]

[0 0 1 1]

[2 2 3 3]

[2 2 3 3]]
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In [42]: print "Map of the Source to the Target:"

print map_source_to_target_data

print ""

Map of the Source to the Target:

[[[[0 0 1 1]

[0 1 0 1]]

[[0 0 1 1]

[2 3 2 3]]]

[[[2 2 3 3]

[0 1 0 1]]

[[2 2 3 3]

[2 3 2 3]]]]

When comparing the printed data to what is shown in the Section Creating Index Map Relationships we
can see that we retrieved the correct data. Since we used our index map relationship, we did not even need
to know names and locations of the datasets.

Using Index Map Relationships to Load Data We can now also use the relationship to directly
load data. For the source we can usually directly load the data from the source. However, note, that
the index map relationship may refer only to select axis of our dataset. If this is the case, then the
imr1['MAP TO SOURCE'].target axis as well as imr1['SOURCE TO MAP'].axis will be set to indicate which
axes of the source the relationship applies to.

For the target we can use the MAP TO TARGET relationship to translate selections from the source

to the target. Similarly, if the relationship refers to only particular axes of the target then the
imr1['MAP TO TARGET'].target axis will be set.
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Let’s see what happens when we load the first two pixels from the source and from the target.

In [43]: source_selection = np.s_[1,1]

target_selection = imr1[’MAP_TO_TARGET’][source_selection]

source_subimage = imr1_source[source_selection] # We could also just write imr1_source[:,0]

target_subimage = imr1_target[:][target_selection[...,0,:] , target_selection[...,0,:] ]

print "Data loaded from source:"

print source_subimage

print ""

print "Data loaded from target:"

print target_subimage

print ""

if np.all(target_subimage == source_subimage):

print "SUCCESS: As we can see the values in the source pixel "

print " and the selected target pixels match as expected"

else:

print "ERROR: It looks like we have made some mistake."

Data loaded from source:

3

Data loaded from target:

[3 3 3 3]

SUCCESS: As we can see the values in the source pixel

and the selected target pixels match as expected

Just to also show what we have done here visually, lets look at the maps of the elements we selected in
source image—which shows that we selected the bottom-right pixel [1,1]—and the maps of the elements we
selected in the target image—which shows that we selected the correspondign 4 pixel in the bottom-right
corner of the target image.

In [44]: print "Elements selected in the source image:"

if HAS_PLT:

source_selection_image = np.zeros(imr1_source.shape, dtype=’bool’)

source_selection_image[source_selection] = True

ax = plt.imshow(source_selection_image, interpolation=’nearest’)

plt.grid(True, linestyle=’--’, linewidth=2)

Elements selected in the source image:
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In [45]: print "Elements selected in the target image:"

if HAS_PLT:

target_selection_image = np.zeros(imr1_target.shape, dtype=’bool’)

target_selection_image[target_selection[...,0,:], target_selection[...,1,:]] = True

ax = plt.imshow(target_selection_image, interpolation=’nearest’)

plt.grid(True, linestyle=’--’, linewidth=2)

Elements selected in the target image:
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Now when we loaded the data from the target image we used the following notation:
target subimage = imr1 target[:][target selection[...,0,:] , target selection[...,1,:]

]

This notation is not arbitrary but we can deterimine programmatically based on the specification of the
relationship how we need to define this selection:

Why are we doing imr1 target[:]?: Again, we here load the full data of the target image first mainly
because h5py.Dataset does not support the same fancy array-based indexing methods that numpy supports,
i.e., this is just a quick workaround and we could also load the data one-element-at-a-time

Why are we doing [target selection[...,0,:] , target selection[...,1,:] ]: Our target
dataset is two-dimensional—which we can check by looking at imr1['MAP TO TARGET'].target.shape. This
means our indicies have multiple components and in numpy we need to describe the elements we select
separately for each dimension of our data. Hence the two components: i) target selection[...,0,:] and
ii) target selection[...,1,:]

Ok, but how do we know we need to slice target selection[...,0,:] in this particular
order? Here we need to look at the specification of the axis and shape of the relationship from our map to
our target

In [46]: print imr1[’MAP_TO_TARGET’].source_axis # These are the axis used for indexing

print imr1[’MAP_TO_TARGET’].source.shape # This is the shape of our map dataset

{u’INDEXING AXIS’: 2, u’STACK AXIS’: 3}
(2, 2, 2, 4)

as we can see: 1. INDEXING AXIS is the second-to-last axis of our map dataset, i.e., this is the axis that
stores the components of our mutlti-dimensional indicies. 2. STACK AXIS is the last axis of our map dataset,
i.e., the set of elements that we map to are stored last.

Hence, when we select the data in our target datsets, the first dimensions—which are describes by . . . , of
our selection— are the intrinsic dimensions of our map dataset. The 0 then is the dimension in our target
dataset. And, finally : indicates that we want to select all elements that we map to (from our STACK AXIS).
Therefore, we write target selection[...,0,:].

In the above example we selected just a single element [1,1] from our source data. As such the
target selection[...,0,:] addresses all data, because, ..., collapes to nothing. However, if we se-
lect multiple elements from our source, then we will have to iterate over our intrinsic dimensions and load
the mapped elements for each source element independently. An example for this is given below in the
Summary section below.

Summary: Interacting with Index Map Relationships Since the above descriptions are heavly
interlaced with validation code, below a quick summary of the main calls we used to interact with our index
map relationship.

To create our index map relationship we used RelationshipAttribute.create index map relationship(...)

as follows:

mapping_relationships = RelationshipAttribute.create_index_map_relationship(

name=’upsampled_image_relationship’,

map_object=map_source_to_target,

source_object=source_image,

target_object=target_image,

map_indexing_axis=2,

map_stack_axis=3)

In [47]: # 1) Get all index map relationships

imr_names = RelationshipAttribute.get_index_map_relationship_names(

parent_object=source_image)
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In [48]: # 2) Get specifically the relationships that desribe the

# ’upsampled_image_relationship’ index map relationship

imr1 = RelationshipAttribute.get_index_map_relationship(

parent_object=source_image,

relationship_name=’upsampled_image_relationship’)

In [49]: # 3) Get the source, target and map dataset

imr1_source = imr1[’MAP_TO_SOURCE’].target

imr1_target = imr1[’MAP_TO_TARGET’].target

imr1_map = imr1[’MAP_TO_SOURCE’].source

In [50]: # 4) Load data from the source

# 4.1) Create the selection. We do this just for convenience but

# we could also just write [0:1,:] every time

source_selection = np.s_[0:1, :]

# 4.2) If the relationship applies to the whole source dataset---i.e.,

# ‘if imr1[’SOURCE_TO_MAP’].source_axis is None‘ or alternatively

# ‘if imr1[’MAP_TO_SOURCE’].target_axis is None---then we can

# simply slice agains the source directly.

selected_source_data1 = imr1_source[source_selection]

# 4.3) If the index map relationship applies only to a subset of the source

# dataset, then we need to look at imr1[’SOURCE_TO_MAP’].source_axis

# to identify to which axis in the source we can select from

In [51]: # 5) Load data from the target

# 5.1) Map the selection from the source to the target

target_selection = imr1[’MAP_TO_TARGET’][source_selection]

# 5.2) For each element we selected in the source dataset, load

# the corresponding data values in the target dataset

selected_target_data = []

for i in range(target_selection.shape[0]):

for j in range(target_selection.shape[1]):

pixel_data = imr1_target[:][target_selection[i,j,0,:] , target_selection[i,j,1,:]]

selected_target_data.append(pixel_data)

As we can see, our index map relationship allows us to programatically interact with both our source and
target image dataset without having to know a priori: i) the name and location of our datasets (i.e., we need
to know only the source or the map dataset), ii) the shapes of our datasets, iii) the ordering of elements in
our map.

4.2 Other Relationship Chains

Currently index map relationships are the only kind of relationship chains with direct support by the
BRAINformat API but users may, naturally, define their own semantics for other kinds of relationship chains
(as long as they manage those chains).
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1 Format Specifications

1.1 Specifying File Modules

Managed file modules are specified via Python dictionaries (which may be serialized to JSON). Below we describe
the syntax of how to specify the various file modules in detail. To help with the creation of valid specifications, we
also provide a series of classes that help with the incremental creation of new file module specification. Here a quick
overview of the main specification modules and classes:

File Format Specification Helper Classes

brain.dataformat.spec.BaseSpec()
brain.dataformat.spec.DatasetSpec(dataset, ...) Specification of a dataset
brain.dataformat.spec.GroupSpec(group, ...) Specification of a group
brain.dataformat.spec.FileSpec(description) Specification of a file
brain.dataformat.spec.ManagedSpec(format_type) Specification of a contained Managed Object
brain.dataformat.spec.AttributeSpec(...[, ...]) Specification of an attribute
brain.dataformat.spec.DimensionSpec(name, ...) Specification of a dimension scale
brain.dataformat.spec.RelationshipSpec(...) Specification of a relationship between datasets
brain.dataformat.spec.RelationshipTargetSpec(...) Specification of the target of a relationship

Group Specification

The group specification must contain the following keys/values:

• datasets : Dictionary of dataset specifications (see below) describing the datasets contained in the group. Note,
these are datasets that are managed directly by this managed group. Datasets with a dedicated manager type as
part of the file format are specified via the managed_objects key.

• groups : Dictionary of group specification describing the groups contained in this group. Note, these are groups
that are managed directly by this managed group. Groups with a dedicated manager type as part of the file
format API are specified via the managed_objects key.

• managed_objects : List of managed object specification describing additional managed datasets or groups
contained in this group.

• attributes : List of attribute specifications. These are attributes associated with the group object directly.

• group : The name of the group. May be None in case the group does not have a fixed name but multiple
instances of the managed group object may exist, in which case the prefix key should be set. In general, only
one of group or prefix should be set but not both.

• prefix : String indicating the prefix to be used for the group name. The prefix is used in case that multiple
instances of this managed object are allowed.

• optional : Boolean indicating whether the group is optional or mandatory.

• description : String describing the purpose of this managed object type. Stored in the brainformat_description
attribute used to help new users with the interpretation of the format.

• relationships : Optional list of relationship specifications describing relationships of this group to other objects.
The key may be omitted if no relationships are specified.

Example:

Oliver Rübe et al. Supplementary Material

2 SUPPLEMENT: FORMAT SPECIFICATION, LICENSE, COPYRIGHT

2851



{'datasets': {'ecog_data': {'dataset': 'raw_data', # dataset key is mandatory may be None
'prefix': None, # prefix key is mandatory may be None
'optional': False, # optional key is mandatory
# dimensions key is optional. If specified we assume that the number of
# dimensions is fixed and that a scale is defined for all dimensions,
# even if it is empty
# NOTE: if multiple scales are defined for the same axis, then the name
# for those axis must be the same, while the unit key may differ
# between scales for the same dimension
'dimensions': [{'name': 'space', # Mandatory

'unit': 'id', # Mandatory
'optional': False, # Mandatory
'dataset': 'electrode_id', # Mandatory. Set to None to only label the axis
'axis': 0,
'description': 'description': 'Id of the recording electrode'}, # Mandatory

{'name': 'time',
'unit': 'ns',
'optional': False,
'dataset': 'time_axis',
'axis': 1,
'description': 'Sample time in ns'}], # use empty dict {} for no dimension scale

'description': 'Dataset with the ECoG recordings data', # Mandatory
'attributes': [{'attribute': 'unit', # Mandatory but may be empty

'value': 'Volt', # Mandatory may be None to indicate user defined
'prefix': None, # Mandatory
'opional': False}]}, # Mandatory

'sampling_rate': {'dataset': 'sampling_rate',
'prefix': None,
'optional': False,
'attributes': [{'attribute': 'unit',

'value': 'KHz',
'prefix': None,
'optional': False}],

'description': 'Sampling rate in KHz'},
'layout': {'dataset': 'layout',

'prefix': None,
'optional': True,
'dimensions': [],
'attributes': [],
'description': 'The physical layout of the electrodes.'}},

'groups': {}, # Mandatory
'managed_objects': [], # e.g., {'format_type': 'BrainDataECoG', 'optional': True}
'attributes': [], # e.g, [{'attribute': 'unit', 'value': KHz, 'prefix': None, 'optional': False}]
'group': None, # Mandatory (use 'dataset' in case of a managed dataset
'prefix': "ecog_data_",
'optional': False,
'description': 'Managed group for storage of raw ECoG recordings.'}

File Specification

The specification of managed files is very similar to the specification of group objects with the following key differ-
ences:

• file_prefix : Required additional entry describing the name prefix for filenames. May be set to None indicating
that arbitrary filenames may be used.

• file_extension : Required file extension. May be set to None to indicate that arbitrary file may be used exten-
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sions.

• group, prefix : The behavior of these keys is identical to groups only that they are used to determine the name
of external links to the files root group. In contrast to group specification, both group and prefix are allowed to
be simultaneously set to None, indicating that no external links should be generated to the file. This is, e.g,the
for brain.dataformat.base.ManagedObjectFile which is a pure container object with the intend that we should
only link to specific object within the container but not the container file itself.

{'datasets': {},
'groups': {},
'managed_objects': [{'format_type': 'BrainDataData', 'optional': False},

{'format_type': 'BrainDataDescriptors', 'optional': False}],
'attributes': [],
'group': None,
'prefix': "entry_",
'file_prefix': None,
'file_extension': '.h5',
'optional': False,
'description': 'Managed BRAIN file.'}

Managed Objects Specification

The specification of managed objects consists of the following keys/values:

• format_type : String indicating the type of the managed object, e.g., BrainDataECoG. Use ManagedObject
as format type, to indicate that any type of managed object may be part of the current group or file.

• optional: Boolean indicating whether the managed object optional or mandatory. This overwrites the optional
key of the format specification of the specification of the managed object.

Example managed object specification:

{'format_type': 'BrainDataECoG', 'optional': True}

Attribute Specification

The specification of attributes consists of the following keys/values:

• attribute : Fixed name for the attribute. May be None in case that a prefix is specified allowing multiple
instances of the attribute for the same object.

• value : Value of the attribute. May be None in case the value for the attribute is not fixed by user-defined.

• prefix : Prefix for the attribute. The prefix is automatically appended by a number so that multiple instances of
the attribute are possible.

• optional: Boolean indicating whether the managed object is optional or mandatory.

• description: Optional string describing the attribute in a human-readable form. The description is optional for
attributes, as it cannot be saved to file as part of the attribute itself (attributes cannot have additional attributes)
but only as part of the larger spec of the object the attribute is applied to

Example attribute specification:

{'attribute': 'unit', # Mandatory but may be None is 'prefix' is set
'value': 'Volt', # Mandatory may be None to indicate that the value user defined (rather then being fixed)
'prefix': None, # Mandatory may be None if 'attribute' is set
'optional': False} # Mandatory boolean.
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Dataset Specification

The specification of datasets consists of the following keys/values:

• dataset : Fixed name for the dataset. May be None in case that prefix is specified to indicate that multiple
numbered instances of the dataset type are allowed.

• prefix : String indicating the prefix to be used for the dataset name. The prefix is used in case that multiple
instances of this dataset object are allowed.

• dimensions : List of dimension scale specification. The dimensions key is optional. If specified we assume
that the number of dimensions is fixed and that a scale is defined for all dimensions, even if it is empty. NOTE:
if multiple scales are defined for the same axis, then the name for those axis must be the same, while the unit
key may differ between scales for the same dimension

• dimensions_fixed Boolean indicating whether the dataset must have exactly the number of dimensions specified
by dimensions. If False, then the dataset is allowed to have additional dimensions not specified in dimensions.
This parameter is optional. If the parameter is missing and dimensions are specified then it is implicitly assumed
to be set to True. If the parameter is missing and dimensions is empty then the parameter is assumed to be
implicitly False.

• description : String describing the purpose of this managed object type. Stored in the brainformat_description
attribute used to help new users with the interpretation of the format.

• attributes : List of attribute specifications. These are attributes associated with the group object directly.

• optional: Boolean indicating whether the object is optional or mandatory.

• primary : Boolean indicating whether the dataset is a primary data source for analysis. This attribute is optional
and is assumed to be False if missing. Marking primary data sources is useful when using data files as part of
a third-party visualization and analysis tools and allows third-party tools to discover which datasets are the
primary sources.

• relationships : Optional list of relationship specifications describing relationships of this dataset to other ob-
jects. The key may be omitted if no relationships are specified.

Example dataset specification:

{'dataset': 'raw_data',
'prefix': None,
'optional': False,
'primary': True
'dimensions': [{'name': 'space',

'unit': 'id',
'optional': False,
'dataset': 'electrode_id',
'axis': 0},

{'name': 'time',
'unit': 'ns',
'optional': False,
'dataset': 'time_axis',
'axis': 1}],

'description': 'Dataset with the ECoG recordings data',
'attributes': [{'attribute': 'unit',

'value': 'Volt',
'prefix': None,
'opional': False}]}
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Dimension Scales Specification

Dimension scale specifications are an optional part of dataset specifications and are only allowed there. Dimension
scales describe the name/type of a particular dimension of dataset. The specification of dimension scales consist of
the following keys/values:

• name : The name of the dimensions scale. NOTE: if multiple dimensions scales are associated with the same
axis of a dataset, then their name must be identical while their unit keys may differ. If a dimension is required
but does not have a dimension scale, then set the name to None. In this case unit and dataset should be None as
well.

• unit : The units in which the dimension is expressed. May be None in case that only a name for the dimensions
should be specified but no actual dimension scale. NOTE: if a dataset is specified then unit must be set as well
as this is used to address the dataset.

• optional: Boolean indicating whether the object is optional or mandatory.

• dataset : The HDF5 dataset with the values for the dimension scale. May be None, in case that no actual
axis scale should be specified, but rather only the dimensions should be labeled, but no actual dimensions scale
should be created. In advanced cases, this may also be a complete Dataset Specification (rather than just a
name).

• axis : Unsigned Integer indicating the axis/dimension the dimension scale is associated with. (Mandatory)

• description: Description of the dimensions scale. The description is associated with the dataset as the format
description attribute (i.e., if the dataset is not set to None). (Mandatory)

• relationships : Optional list of relationship specifications describing relationships of the dataset associated with
the dimensions scale to other objects. The key may be omitted if no relationships are specified. If relationships
are specified, then the dataset key must be set.

{'name': 'space',
'unit': 'id',
'optional': False,
'dataset': 'electrode_id',
'axis': 0,
'description': 'Id of the recording electrode'}

Relationship Specification

Relationships describe semantic links between file objects (usually datasets or groups). They are an optional part of
Dataset and Group specifications. Relationship may also be defined as part of Dimensions Scale specifications if a
dataset is associated with the scale.

In practice, many relationships are dynamic (i.e., only known once the data is generated), however, some relationships
can already be described in the specification of the file format itself. Such static relationships often describe basic
details of data structures, e.g, one array storing indices into another array etc.. The specification of basic relationships
consists of the following keys/values:

• attribute: The name of the attribute used to store the relationship. May be None if prefix is specified.
One of prefix or attribute must be set.

• prefix: Prefix of attributes used to store this type of relationship. May be None if attribute is
specified. One of prefix or attribute must be set.

• traget: Dictionary specifying the target object of the relationship (e.g, the dataset the relationship
points to). The target dictionary consists of the following keys/values:

– filename File where the target is located. Set to None in case that the target is located in the
same file as the source.
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– global_path Typically we try to define Managed Objects in a self-contained fashion, i.e., all
data related to object should be available in the same managed objects. However, in some cases
it is useful to store repeatably-used and shared data in central locations. The global key allows
us to specify the location of global targets that we want to point to. The dataset, group, prefix
keys are still honored, i.e, the global key only gives us the base location where the object is
located.

* <path> The global key may be an absolute path, in which case the path will start with /.
This form of description is often used when a user adds custom relationships to the file.

* <GlobalTargetClass>:<GlobalKey> GlobalTargetClass indicates the name of the dictio-
nary (i.e, namespace) for the global targets and the GlobalKey is the name of the particular
global target, where the value associated with the key is expected to be the absolute path
within the file to the global target. This strategy is mainly useful when specifying static
relationships and assumes that a dictionary of GLOBAL_PATH is available for the format
so that these paths can be resolved to absolute paths when creating the relationships. I.e.,
within a file, global_paths should always be an absolute <path>, but within a specification
of a format this strategy may be used to avoid the inclusing of absolute path in the specifi-
cation of indiviual Managed Objects and to allow global paths to be specified in a central
location that the API must be aware of.

* None indicating that we are indexing a local structure within the parent group of the source
object

– dataset The name of the dataset the relationship points to. This is usually a relative name within
the current specification (i.e., the parent object that contains the object with the relationship).
May be None if group or prefix are defined. dataset must be None if group or prefix are set.

– group The name of the group the relationship points to. This is usually a relative name within
the current specification (i.e., the parent object that contains the object with the relationship).
May be None if dataset or prefix are defined. Must be None if dataset is set. May be used in
combindation with prefix to point to the parent location where the prefix’s are located.

– prefix The name prefix of the dataset or group the relationship points to . This is usually a
relative name within the current specification (i.e., the parent object that contains the object with
the relationship). May be None if group or dataset are defined. May be used in combination
with group.

– axis The index (or name) of the axis we point to (if the relationship points to a particular dataset)
or None. Must be None if the relationship points to a group. May be a list of axis indicies if the
relationship encompasses multiple axis.

• axis: The axis of the source object the relationships refers to (if the source is a dataset). May be a list
of axis indicies if the relationship encompasses multiple axis. Use None if the relationship does not
refer to a particular axis but rather the source object as a whole. (Must be None if the relationship
refers to a group). In the case of indexes relationships, axis may be used to identify the dimension
that defines the indicies (e.g, if we index a 2D dataset then we may have a 20x2 dataset containing 20
two-dimensional indicies, where the second axis defines the indicies). Also, in indexes relationships,
this may also be a dict to encode the {‘INDEXING_AXIS’:<value>, ‘STACK_AXIS’:<value>}, i.e.,
the axis used for indexing and the axis used for stacking to describe 1 to many indexing.

• relationship_type: String indicating the type of the relationship. Currently supported relationship
types include:

– indexes: The source dataset contains indices into the target dataset. These are often integer
indices, however, e.g, if the relationship points to a group, then the source dataset may also con-
tain strings selecting the objects stored in the group. The source of such a relationship, however,
should always be a dataset. In the case of multi-dimensions indicies it is useful to specify axis
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for the source to indicate along which dimensions (typically 0 or the last dimensions) indices
are stored.

– indexes_values: The source selects certain parts of the target based on the values (or keys
in case of group(s)) in the target. Specification of axis for the target usually does not make
sense for this type of relationship. The indexes_values relationship implies that the datasets
use a shared_encoding (see next bullet) and is effectively a special type of shared_encoding
relationship that beyond the encoding describes that the source is selecting data in the target
based on value.

– shared_encoding: The target and source dataset contain values with the same encoding, i.e.,
values in the two datasets can be directly compared. The specification of a target axis usually
does not make sense for this type of relationship.

– shared_ascending_encoding : Same as shared_encoding but the source and target datasets are
expected to be sorted by value (e.g., in the case of time)

– order: The ordering of objects matches between the datasets along the given axes. This rela-
tionship type in practice makes mainly sense between datasets as no explicit order is defined for
objects inside a group (however a user may impose a particular order in their formats if desired).

– equivalent: In addition to order, this relationship type expresses that the source and target object
encode the same data (even if they might store different values). E.g., a token may be encoded
by its name or by an integer index. This relationship also implies that the source and target
contain the same number of values ordered in the same fashion.

– user: Arbitrary user-defined relationship. Use this type to describe arbitrary relationships be-
tween objects. E.g, two datasets may have some semantic relationship that a user may want to
document. Additional data to describe this relationship may be stored in the properties of the
relationship.

• optional: Boolean indicating whether the object is optional or mandatory

• description: Text describing the relationship in a human-readable form

• properties: Optional (JSON serializable) dictionary with additional user properties.

NOTE: In the case of relationships we assume that both the source and target have already been specified, i.e., we can
here only refer to the data by name and not via Dataset or Group specifications.

NOTE: Relationships may generally only be defined for Datasets and Groups (including Datasets of DimensionScales)
but not for Attributes.

NOTE: When storing Relationship Attributes the BRAINformat API prepends a fixed prefixed defined in Relation-
shipAttribute.RELATIONSHIP_ATTRIBUTE_PREFIX to the attribute name. This is to standardize and ease finding
relationship attributes.

NOTE: The BRAINformat API also implements index map relationships which are a series of relationships
used in conjunction to describe the mapping between two datasets via an intermediary map dataset. Relation-
ship attributes that belong to such a relationship are identified via a set of postfixes defined in RelationshipAt-
tribute.INDEX_MAP_RELATIONSHIP_POSTFIX. Further details about index map relationships can be found in the
introductory tutorial on relationship attributes available as part of the brain.examples tutorial series.

{'attribute':'region_encoding', # The name of the relationship
'prefix': None, # Attribute is set
'target': {'global': None, # None if this is a local relationship or <GlobalTargetClass>:<GlobalKey> of the global target

'dataset': 'anatomy_id', # The dataset we link to
'group': None, # The group we link to
'prefix': None, # The prefix of the object(s) we link to
'prefix_index': None, # The index of the prefix object we link to or None if we link to all
'axis': None}, # The axis of the dataset we link to
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'axis': None, # The axis that has the relationship
'type': 'equivalent', # The type of the relationship.
'optional': False, # Is the relationship optional
'description':' Region encoded as id', # Text description of the relationship
'properties': None # Optional dict with user properties

}

2 Full Specification for BrainDataFile (JSON)

Since the format is directly specified by the ManagedObjects we can easily construct the full specification for the full
file format (e.g, for BrainDataFile) as follows:

import time
from brain.dataformat.brainformat import BrainDataFile
from brain.dataformat.spec import *

format_spec = BrainDataFile.get_format_specification_recursive()
file_spec = BaseSpec.from_dict(format_spec)

print '**' + str(time.ctime(time.time())) + '**'
print file_spec.to_json(pretty=True)

An example output from the above code-example is given below. Similarly we can compute the specification of any
managed sub-object of a file.

**Tue Apr 24 23:54:59 2015**
{

"attributes": [
{

"attribute": "format_type",
"optional": false,
"prefix": null,
"value": "BrainDataFile"

},
{

"attribute": "format_description",
"optional": false,
"prefix": null,
"value": "Managed BRAIN file."

},
{

"attribute": "object_id",
"optional": true,
"prefix": null,
"value": null

},
{

"attribute": "format_specification",
"optional": false,
"prefix": null,
"value": null

}
],
"datasets": {},
"description": "Managed BRAIN file.",
"file_extension": ".h5",
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"file_prefix": null,
"group": null,
"groups": {

"data": {
"attributes": [

{
"attribute": "format_type",
"optional": false,
"prefix": null,
"value": "BrainDataData"

},
{

"attribute": "format_description",
"optional": false,
"prefix": null,
"value": "Managed group for storage of brain data (internal and external)."

},
{

"attribute": "object_id",
"optional": true,
"prefix": null,
"value": null

},
{

"attribute": "format_specification",
"optional": false,
"prefix": null,
"value": null

}
],
"datasets": {},
"description": "Managed group for storage of brain data (internal and external).",
"group": "data",
"groups": {

"external": {
"attributes": [

{
"attribute": "format_type",
"optional": false,
"prefix": null,
"value": "BrainDataExternalData"

},
{

"attribute": "format_description",
"optional": false,
"prefix": null,
"value": "Managed group for storage of external data related to the internal brain data."

},
{

"attribute": "object_id",
"optional": true,
"prefix": null,
"value": null

},
{

"attribute": "format_specification",
"optional": false,
"prefix": null,
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"value": null
}

],
"datasets": {},
"description": "Managed group for storage of external data related to the internal brain data.",
"group": "external",
"groups": {},
"managed_objects": [],
"optional": false,
"prefix": null,
"relationships": []

},
"internal": {

"attributes": [
{

"attribute": "format_type",
"optional": false,
"prefix": null,
"value": "BrainDataInternalData"

},
{

"attribute": "format_description",
"optional": false,
"prefix": null,
"value": "Managed group for storage of a collection of internal brain data."

},
{

"attribute": "object_id",
"optional": true,
"prefix": null,
"value": null

},
{

"attribute": "format_specification",
"optional": false,
"prefix": null,
"value": null

}
],
"datasets": {},
"description": "Managed group for storage of a collection of internal brain data.",
"group": "internal",
"groups": {

"ecog_data_": {
"attributes": [

{
"attribute": "format_type",
"optional": false,
"prefix": null,
"value": "BrainDataECoG"

},
{

"attribute": "format_description",
"optional": false,
"prefix": null,
"value": "Managed group for storage of raw ECoG recordings."

},
{
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"attribute": "object_id",
"optional": true,
"prefix": null,
"value": null

},
{

"attribute": "format_specification",
"optional": false,
"prefix": null,
"value": null

}
],
"datasets": {

"ecog_data": {
"attributes": [

{
"attribute": "unit",
"optional": false,
"prefix": null,
"value": "Volt"

}
],
"dataset": "raw_data",
"description": "Dataset with the ECoG recordings data",
"dimensions": [

{
"axis": 0,
"dataset": "electrode_id",
"description": "Id of the recording electrode",
"name": "space",
"optional": false,
"relationships": [],
"unit": "id"

},
{

"axis": 1,
"dataset": "time_axis",
"description": "Sample time in ms",
"name": "time",
"optional": false,
"relationships": [],
"unit": "ms"

},
{

"axis": 0,
"dataset": "anatomy_name",
"description": "Name of region location of the electrodes",
"name": "space",
"optional": true,
"relationships": [],
"unit": "region name"

},
{

"axis": 0,
"dataset": "anatomy_id",
"description": "Integer id of the region location of the electrodes",
"name": "space",
"optional": true,
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"relationships": [],
"unit": "region id"

}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"primary": true,
"relationships": []

},
"layout": {

"attributes": [],
"dataset": "layout",
"description": "The physical layout of the electrodes.",
"dimensions": [],
"optional": true,
"prefix": null,
"relationships": []

},
"sampling_rate": {

"attributes": [
{

"attribute": "unit",
"optional": false,
"prefix": null,
"value": "Hz"

}
],
"dataset": "sampling_rate",
"description": "Sampling rate in Hz",
"dimensions": [],
"optional": false,
"prefix": null,
"relationships": []

}
},
"description": "Managed group for storage of raw ECoG recordings.",
"group": null,
"groups": {

"annotations_": {
"attributes": [

{
"attribute": "collection_description",
"optional": false,
"prefix": null,
"value": null

},
{

"attribute": "format_type",
"optional": false,
"prefix": null,
"value": "AnnotationDataGroup"

},
{

"attribute": "format_description",
"optional": false,
"prefix": null,
"value": "Managed group for storage of a collection of annotations. Multiple annotation collections may typically be associated with the same data object."
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},
{

"attribute": "object_id",
"optional": true,
"prefix": null,
"value": null

},
{

"attribute": "format_specification",
"optional": false,
"prefix": null,
"value": null

}
],
"datasets": {

"annotation_type_indexes": {
"attributes": [],
"dataset": "annotation_type_indexes",
"description": "Dataset indicating for each selection the index of the annotation type used. The annotation types are given in the annotation types dataset.",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index into the annotation_types array indicating the type of the annotation",
"name": "type_index",
"optional": false,
"relationships": [],
"unit": null

}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"relationships": []

},
"annotation_types": {

"attributes": [],
"dataset": "annotation_types",
"description": "List of all available annotation types",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index of the type",
"name": "type_index",
"optional": false,
"relationships": [],
"unit": null

}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"relationships": []

},
"data_object": {

"attributes": [],
"dataset": "data_object",
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"description": "None",
"dimensions": [],
"optional": false,
"prefix": null,
"relationships": []

},
"descriptions": {

"attributes": [],
"dataset": "descriptions",
"description": "Dataset with the annotation descriptions.",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index of the annotation",
"name": "annotation_index",
"optional": false,
"relationships": [],
"unit": null

}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"relationships": []

},
"properties": {

"attributes": [
{

"attribute": "name",
"optional": false,
"prefix": null,
"value": null

}
],
"dataset": null,
"description": "Datasets with a particular property for all selections.",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index of the selection",
"name": "selection_index",
"optional": false,
"relationships": [],
"unit": null

}
],
"dimensions_fixed": false,
"optional": true,
"prefix": "property_",
"relationships": []

},
"selection_indexes": {

"attributes": [],
"dataset": "selection_indexes",
"description": "Dataset indicating for each axis the index of the selection applied to the given axis. -1 indicates that no selection is applied along that axis. The axis index ranges from -1 to n where -1 indicated global selection and n is the number of axes.",
"dimensions": [
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{
"axis": 0,
"dataset": null,
"description": "Integer index of the annotation",
"name": "annotation_index",
"optional": false,
"relationships": [],
"unit": null

},
{

"axis": 1,
"dataset": "axis_index",
"description": "Integer index of the axis",
"name": "axis_index",
"optional": false,
"relationships": [],
"unit": "index"

}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"relationships": []

},
"selections": {

"attributes": [
{

"attribute": "axis",
"optional": false,
"prefix": null,
"value": null

}
],
"dataset": null,
"description": "Datasets with all selections for the indicated axis. Axis -1 indicates a global selection across all axes. One dataset per axis and one for global selection (-1) is mandatory.",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index of the selection",
"name": "selection_index",
"optional": false,
"relationships": [],
"unit": null

}
],
"dimensions_fixed": false,
"optional": false,
"prefix": "selections_axis_",
"relationships": []

}
},
"description": "Managed group for storage of a collection of annotations. Multiple annotation collections may typically be associated with the same data object.",
"group": null,
"groups": {},
"managed_objects": [],
"optional": true,
"prefix": "annotations_",
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"relationships": []
}

},
"managed_objects": [],
"optional": true,
"prefix": "ecog_data_",
"relationships": []

},
"ecog_data_processed_": {

"attributes": [
{

"attribute": "format_type",
"optional": false,
"prefix": null,
"value": "BrainDataECoGProcessed"

},
{

"attribute": "format_description",
"optional": false,
"prefix": null,
"value": "Managed group for storage of processed ECoG recordings."

},
{

"attribute": "object_id",
"optional": true,
"prefix": null,
"value": null

},
{

"attribute": "format_specification",
"optional": false,
"prefix": null,
"value": null

}
],
"datasets": {

"ecog_data": {
"attributes": [

{
"attribute": "unit",
"optional": false,
"prefix": null,
"value": null

},
{

"attribute": "original_name",
"optional": true,
"prefix": null,
"value": null

}
],
"dataset": "processed_data",
"description": "Dataset with the ECoG recordings data",
"dimensions": [

{
"axis": 0,
"dataset": "spatial_id",
"description": "Id of the recording electrode",
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"name": "space",
"optional": false,
"relationships": [],
"unit": "id"

},
{

"axis": 1,
"dataset": "time_axis",
"description": "Sample time in ms",
"name": "time",
"optional": false,
"relationships": [],
"unit": "ms"

},
{

"axis": 0,
"dataset": "anatomy_name",
"description": "Name of region location of the electrodes",
"name": "space",
"optional": true,
"relationships": [],
"unit": "region name"

},
{

"axis": 0,
"dataset": "anatomy_id",
"description": "Integer id of the region location of the electrodes",
"name": "space",
"optional": true,
"relationships": [],
"unit": "region id"

},
{

"axis": 2,
"dataset": "frequency_bands",
"description": "Frequency bands of the channels",
"name": "channels",
"optional": true,
"relationships": [],
"unit": "Hz"

},
{

"axis": 2,
"dataset": "token_id",
"description": "Integer Id of the token type",
"name": "channels",
"optional": true,
"relationships": [],
"unit": "token id"

},
{

"axis": 2,
"dataset": "token_name",
"description": "Name of the token type",
"name": "channels",
"optional": true,
"relationships": [],
"unit": "token name"
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}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"primary": true,
"relationships": []

},
"layout": {

"attributes": [],
"dataset": "layout",
"description": "The physical layout of the electrodes.",
"dimensions": [],
"optional": true,
"prefix": null,
"relationships": []

},
"sampling_rate": {

"attributes": [
{

"attribute": "unit",
"optional": false,
"prefix": null,
"value": "Hz"

}
],
"dataset": "sampling_rate",
"description": "Sampling rate in Hz",
"dimensions": [],
"optional": false,
"prefix": null,
"relationships": []

}
},
"description": "Managed group for storage of processed ECoG recordings.",
"group": null,
"groups": {

"annotations_": {
"attributes": [

{
"attribute": "collection_description",
"optional": false,
"prefix": null,
"value": null

},
{

"attribute": "format_type",
"optional": false,
"prefix": null,
"value": "AnnotationDataGroup"

},
{

"attribute": "format_description",
"optional": false,
"prefix": null,
"value": "Managed group for storage of a collection of annotations. Multiple annotation collections may typically be associated with the same data object."

},
{
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"attribute": "object_id",
"optional": true,
"prefix": null,
"value": null

},
{

"attribute": "format_specification",
"optional": false,
"prefix": null,
"value": null

}
],
"datasets": {

"annotation_type_indexes": {
"attributes": [],
"dataset": "annotation_type_indexes",
"description": "Dataset indicating for each selection the index of the annotation type used. The annotation types are given in the annotation types dataset.",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index into the annotation_types array indicating the type of the annotation",
"name": "type_index",
"optional": false,
"relationships": [],
"unit": null

}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"relationships": []

},
"annotation_types": {

"attributes": [],
"dataset": "annotation_types",
"description": "List of all available annotation types",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index of the type",
"name": "type_index",
"optional": false,
"relationships": [],
"unit": null

}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"relationships": []

},
"data_object": {

"attributes": [],
"dataset": "data_object",
"description": "None",
"dimensions": [],
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"optional": false,
"prefix": null,
"relationships": []

},
"descriptions": {

"attributes": [],
"dataset": "descriptions",
"description": "Dataset with the annotation descriptions.",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index of the annotation",
"name": "annotation_index",
"optional": false,
"relationships": [],
"unit": null

}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"relationships": []

},
"properties": {

"attributes": [
{

"attribute": "name",
"optional": false,
"prefix": null,
"value": null

}
],
"dataset": null,
"description": "Datasets with a particular property for all selections.",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index of the selection",
"name": "selection_index",
"optional": false,
"relationships": [],
"unit": null

}
],
"dimensions_fixed": false,
"optional": true,
"prefix": "property_",
"relationships": []

},
"selection_indexes": {

"attributes": [],
"dataset": "selection_indexes",
"description": "Dataset indicating for each axis the index of the selection applied to the given axis. -1 indicates that no selection is applied along that axis. The axis index ranges from -1 to n where -1 indicated global selection and n is the number of axes.",
"dimensions": [

{
"axis": 0,
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"dataset": null,
"description": "Integer index of the annotation",
"name": "annotation_index",
"optional": false,
"relationships": [],
"unit": null

},
{

"axis": 1,
"dataset": "axis_index",
"description": "Integer index of the axis",
"name": "axis_index",
"optional": false,
"relationships": [],
"unit": "index"

}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"relationships": []

},
"selections": {

"attributes": [
{

"attribute": "axis",
"optional": false,
"prefix": null,
"value": null

}
],
"dataset": null,
"description": "Datasets with all selections for the indicated axis. Axis -1 indicates a global selection across all axes. One dataset per axis and one for global selection (-1) is mandatory.",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index of the selection",
"name": "selection_index",
"optional": false,
"relationships": [],
"unit": null

}
],
"dimensions_fixed": false,
"optional": false,
"prefix": "selections_axis_",
"relationships": []

}
},
"description": "Managed group for storage of a collection of annotations. Multiple annotation collections may typically be associated with the same data object.",
"group": null,
"groups": {},
"managed_objects": [],
"optional": true,
"prefix": "annotations_",
"relationships": []

}
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},
"managed_objects": [],
"optional": true,
"prefix": "ecog_data_processed_",
"relationships": []

}
},
"managed_objects": [],
"optional": false,
"prefix": null,
"relationships": []

}
},
"managed_objects": [],
"optional": false,
"prefix": null,
"relationships": []

},
"descriptors": {

"attributes": [
{

"attribute": "format_type",
"optional": false,
"prefix": null,
"value": "BrainDataDescriptors"

},
{

"attribute": "format_description",
"optional": false,
"prefix": null,
"value": "Managed group for storage of a collection of brain data descriptors."

},
{

"attribute": "object_id",
"optional": true,
"prefix": null,
"value": null

},
{

"attribute": "format_specification",
"optional": false,
"prefix": null,
"value": null

}
],
"datasets": {},
"description": "Managed group for storage of a collection of brain data descriptors.",
"group": "descriptors",
"groups": {

"dynamic": {
"attributes": [

{
"attribute": "format_type",
"optional": false,
"prefix": null,
"value": "BrainDataDynamicDescriptors"

},
{
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"attribute": "format_description",
"optional": false,
"prefix": null,
"value": "Managed group for storage of static descriptors."

},
{

"attribute": "object_id",
"optional": true,
"prefix": null,
"value": null

},
{

"attribute": "format_specification",
"optional": false,
"prefix": null,
"value": null

}
],
"datasets": {},
"description": "Managed group for storage of static descriptors.",
"group": "dynamic",
"groups": {},
"managed_objects": [],
"optional": false,
"prefix": null,
"relationships": []

},
"static": {

"attributes": [
{

"attribute": "format_type",
"optional": false,
"prefix": null,
"value": "BrainDataStaticDescriptors"

},
{

"attribute": "format_description",
"optional": false,
"prefix": null,
"value": "Managed group for storage of static descriptors."

},
{

"attribute": "object_id",
"optional": true,
"prefix": null,
"value": null

},
{

"attribute": "format_specification",
"optional": false,
"prefix": null,
"value": null

}
],
"datasets": {},
"description": "Managed group for storage of static descriptors.",
"group": "static",
"groups": {},
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"managed_objects": [],
"optional": false,
"prefix": null,
"relationships": []

}
},
"managed_objects": [],
"optional": false,
"prefix": null,
"relationships": []

}
},
"managed_objects": [],
"optional": false,
"prefix": "entry_",
"relationships": []

}

3 Specification Document for brain.dataformat.brainformat

The specification document for a file format module—in this case the LBNL brain format—can be easily compiled
directly from the given API modules. This allows developers to easily add new format classes and modules without
having to maintain multiple documents.

from brain.dataformat.spec import BaseSpec
import brain.dataformat.brainformat as brainformat
json_spec = BaseSpec.compile_format_document(module_object=brainformat, as_json=True, pretty=True)

print '**' + str(time.ctime(time.time())) + '**'
print json_spec

**Sun Jul 26 22:12:21 2015**
{

"AnnotationDataGroup": {
"attributes": [

{
"attribute": "collection_description",
"optional": false,
"prefix": null,
"value": null

}
],
"datasets": {

"annotation_type_indexes": {
"attributes": [],
"dataset": "annotation_type_indexes",
"description": "Dataset indicating for each selection the index of the annotation type used. The annotation types are given in the annotation types dataset.",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index into the annotation_types array indicating the type of the annotation",
"name": "type_index",
"optional": false,
"relationships": [],
"unit": null
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}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"relationships": []

},
"annotation_types": {

"attributes": [],
"dataset": "annotation_types",
"description": "List of all available annotation types",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index of the type",
"name": "type_index",
"optional": false,
"relationships": [],
"unit": null

}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"relationships": []

},
"data_object": {

"attributes": [],
"dataset": "data_object",
"description": "None",
"dimensions": [],
"optional": false,
"prefix": null,
"relationships": []

},
"descriptions": {

"attributes": [],
"dataset": "descriptions",
"description": "Dataset with the annotation descriptions.",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index of the annotation",
"name": "annotation_index",
"optional": false,
"relationships": [],
"unit": null

}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"relationships": []

},
"properties": {

"attributes": [
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{
"attribute": "name",
"optional": false,
"prefix": null,
"value": null

}
],
"dataset": null,
"description": "Datasets with a particular property for all selections.",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index of the selection",
"name": "selection_index",
"optional": false,
"relationships": [],
"unit": null

}
],
"dimensions_fixed": false,
"optional": true,
"prefix": "property_",
"relationships": []

},
"selection_indexes": {

"attributes": [],
"dataset": "selection_indexes",
"description": "Dataset indicating for each axis the index of the selection applied to the given axis. -1 indicates that no selection is applied along that axis. The axis index ranges from -1 to n where -1 indicated global selection and n is the number of axes.",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index of the annotation",
"name": "annotation_index",
"optional": false,
"relationships": [],
"unit": null

},
{

"axis": 1,
"dataset": "axis_index",
"description": "Integer index of the axis",
"name": "axis_index",
"optional": false,
"relationships": [],
"unit": "index"

}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"relationships": []

},
"selections": {

"attributes": [
{

"attribute": "axis",
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"optional": false,
"prefix": null,
"value": null

}
],
"dataset": null,
"description": "Datasets with all selections for the indicated axis. Axis -1 indicates a global selection across all axes. One dataset per axis and one for global selection (-1) is mandatory.",
"dimensions": [

{
"axis": 0,
"dataset": null,
"description": "Integer index of the selection",
"name": "selection_index",
"optional": false,
"relationships": [],
"unit": null

}
],
"dimensions_fixed": false,
"optional": false,
"prefix": "selections_axis_",
"relationships": []

}
},
"description": "Managed group for storage of a collection of annotations. Multiple annotation collections may typically be associated with the same data object.",
"group": null,
"groups": {},
"managed_objects": [],
"optional": true,
"prefix": "annotations_",
"relationships": []

},
"BrainDataData": {

"attributes": [],
"datasets": {},
"description": "Managed group for storage of brain data (internal and external).",
"group": "data",
"groups": {},
"managed_objects": [

{
"format_type": "BrainDataInternalData",
"optional": false

},
{

"format_type": "BrainDataExternalData",
"optional": false

}
],
"optional": false,
"prefix": null,
"relationships": []

},
"BrainDataDescriptors": {

"attributes": [],
"datasets": {},
"description": "Managed group for storage of a collection of brain data descriptors.",
"group": "descriptors",
"groups": {},
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"managed_objects": [
{

"format_type": "BrainDataStaticDescriptors",
"optional": false

},
{

"format_type": "BrainDataDynamicDescriptors",
"optional": false

}
],
"optional": false,
"prefix": null,
"relationships": []

},
"BrainDataDynamicDescriptors": {

"attributes": [],
"datasets": {},
"description": "Managed group for storage of static descriptors.",
"group": "dynamic",
"groups": {},
"managed_objects": [],
"optional": false,
"prefix": null,
"relationships": []

},
"BrainDataECoG": {

"attributes": [],
"datasets": {

"ecog_data": {
"attributes": [

{
"attribute": "unit",
"optional": false,
"prefix": null,
"value": "Volt"

}
],
"dataset": "raw_data",
"description": "Dataset with the ECoG recordings data",
"dimensions": [

{
"axis": 0,
"dataset": "electrode_id",
"description": "Id of the recording electrode",
"name": "space",
"optional": false,
"relationships": [],
"unit": "id"

},
{

"axis": 1,
"dataset": "time_axis",
"description": "Sample time in ms",
"name": "time",
"optional": false,
"relationships": [],
"unit": "ms"

},
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{
"axis": 0,
"dataset": "anatomy_name",
"description": "Name of region location of the electrodes",
"name": "space",
"optional": true,
"relationships": [],
"unit": "region name"

},
{

"axis": 0,
"dataset": "anatomy_id",
"description": "Integer id of the region location of the electrodes",
"name": "space",
"optional": true,
"relationships": [],
"unit": "region id"

}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"primary": true,
"relationships": []

},
"layout": {

"attributes": [],
"dataset": "layout",
"description": "The physical layout of the electrodes.",
"dimensions": [],
"optional": true,
"prefix": null,
"relationships": []

},
"sampling_rate": {

"attributes": [
{

"attribute": "unit",
"optional": false,
"prefix": null,
"value": "Hz"

}
],
"dataset": "sampling_rate",
"description": "Sampling rate in Hz",
"dimensions": [],
"optional": false,
"prefix": null,
"relationships": []

}
},
"description": "Managed group for storage of raw ECoG recordings.",
"group": null,
"groups": {},
"managed_objects": [

{
"format_type": "AnnotationDataGroup",
"optional": true
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}
],
"optional": false,
"prefix": "ecog_data_",
"relationships": []

},
"BrainDataECoGProcessed": {

"attributes": [],
"datasets": {

"ecog_data": {
"attributes": [

{
"attribute": "unit",
"optional": false,
"prefix": null,
"value": null

},
{

"attribute": "original_name",
"optional": true,
"prefix": null,
"value": null

}
],
"dataset": "processed_data",
"description": "Dataset with the ECoG recordings data",
"dimensions": [

{
"axis": 0,
"dataset": "spatial_id",
"description": "Id of the recording electrode",
"name": "space",
"optional": false,
"relationships": [],
"unit": "id"

},
{

"axis": 1,
"dataset": "time_axis",
"description": "Sample time in ms",
"name": "time",
"optional": false,
"relationships": [],
"unit": "ms"

},
{

"axis": 0,
"dataset": "anatomy_name",
"description": "Name of region location of the electrodes",
"name": "space",
"optional": true,
"relationships": [],
"unit": "region name"

},
{

"axis": 0,
"dataset": "anatomy_id",
"description": "Integer id of the region location of the electrodes",
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"name": "space",
"optional": true,
"relationships": [],
"unit": "region id"

},
{

"axis": 2,
"dataset": "frequency_bands",
"description": "Frequency bands of the channels",
"name": "channels",
"optional": true,
"relationships": [],
"unit": "Hz"

},
{

"axis": 2,
"dataset": "token_id",
"description": "Integer Id of the token type",
"name": "channels",
"optional": true,
"relationships": [],
"unit": "token id"

},
{

"axis": 2,
"dataset": "token_name",
"description": "Name of the token type",
"name": "channels",
"optional": true,
"relationships": [],
"unit": "token name"

}
],
"dimensions_fixed": true,
"optional": false,
"prefix": null,
"primary": true,
"relationships": []

},
"layout": {

"attributes": [],
"dataset": "layout",
"description": "The physical layout of the electrodes.",
"dimensions": [],
"optional": true,
"prefix": null,
"relationships": []

},
"sampling_rate": {

"attributes": [
{

"attribute": "unit",
"optional": false,
"prefix": null,
"value": "Hz"

}
],
"dataset": "sampling_rate",
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"description": "Sampling rate in Hz",
"dimensions": [],
"optional": false,
"prefix": null,
"relationships": []

}
},
"description": "Managed group for storage of processed ECoG recordings.",
"group": null,
"groups": {},
"managed_objects": [

{
"format_type": "AnnotationDataGroup",
"optional": true

}
],
"optional": false,
"prefix": "ecog_data_processed_",
"relationships": []

},
"BrainDataExternalData": {

"attributes": [],
"datasets": {},
"description": "Managed group for storage of external data related to the internal brain data.",
"group": "external",
"groups": {},
"managed_objects": [],
"optional": false,
"prefix": null,
"relationships": []

},
"BrainDataFile": {

"attributes": [],
"datasets": {},
"description": "Managed BRAIN file.",
"file_extension": ".h5",
"file_prefix": null,
"group": null,
"groups": {},
"managed_objects": [

{
"format_type": "BrainDataData",
"optional": false

},
{

"format_type": "BrainDataDescriptors",
"optional": false

}
],
"optional": false,
"prefix": "entry_",
"relationships": []

},
"BrainDataInternalData": {

"attributes": [],
"datasets": {},
"description": "Managed group for storage of a collection of internal brain data.",
"group": "internal",
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"groups": {},
"managed_objects": [

{
"format_type": "BrainDataECoG",
"optional": true

},
{

"format_type": "BrainDataECoGProcessed",
"optional": true

}
],
"optional": false,
"prefix": null,
"relationships": []

},
"BrainDataMultiFile": {

"attributes": [],
"datasets": {},
"description": "Container file used to organize multiple BrainDataFile objects into a larger data collection, e.g., to create a collection of recording session or experiments allowing users to more seamlessly interact with many related files.",
"file_extension": ".h5",
"file_prefix": null,
"group": null,
"groups": {},
"managed_objects": [

{
"format_type": "BrainDataFile",
"optional": true

}
],
"optional": false,
"prefix": null,
"relationships": []

},
"BrainDataStaticDescriptors": {

"attributes": [],
"datasets": {},
"description": "Managed group for storage of static descriptors.",
"group": "static",
"groups": {},
"managed_objects": [],
"optional": false,
"prefix": null,
"relationships": []

},
"ManagedObjectFile": {

"attributes": [],
"datasets": {},
"description": "Container file used for external storage of managed objects. This container file is used to allow modular files where different components of a file are stored in separate files that are linked viahard links.",
"file_extension": ".h5",
"file_prefix": null,
"group": "/",
"groups": {},
"managed_objects": [

{
"format_type": "ManagedObject",
"optional": true

}
],
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"optional": false,
"prefix": null,
"relationships": []

}
}

4 License & Copyright

4.1 License

BrainFormat Copyright (c) 2014, The Regents of the University of California, through Lawrence Berkeley National
Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy
nor the names of its contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written
license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free
perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute,
and sublicense such enhancements or derivative works thereof, in binary and source code form.

4.2 Copyright

BrainFormat Copyright (c) 2014, The Regents of the University of California, through Lawrence Berkeley National
Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

If you have questions about your rights to use or distribute this software, please contact Berkeley Lab’s Innovation &
Partnerships Office at IPO@lbl.gov referring to ” BrainFormat (LBNL Ref 2015-020).”

NOTICE. This software was developed under funding from the U.S. Department of Energy. As such, the U.S. Govern-
ment has been granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable, worldwide license
in the Software to reproduce, prepare derivative works, and perform publicly and display publicly. Beginning five (5)
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years after the date permission to assert copyright is obtained from the U.S. Department of Energy, and subject to any
subsequent five (5) year renewals, the U.S. Government is granted for itself and others acting on its behalf a paid-up,
nonexclusive, irrevocable, worldwide license in the Software to reproduce, prepare derivative works, distribute copies
to the public, perform publicly and display publicly, and to permit others to do so.
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Neuromap Index Map Relationship

Oliver Rübel

June 4, 2015

1 Application Example: Using Index Map Relationship to Relate
Two Images

In [1]: %matplotlib inline

import matplotlib.image as mpimg

import matplotlib.pyplot as plt

import scipy.misc

import numpy as np

from tempfile import NamedTemporaryFile

import h5py

import sys

sys.path.append(’/Users/oruebel/Devel/BrainFormat’)

from brain.dataformat.base import RelationshipAttribute

1.1 Create the example image datasets

In [2]: # Read the image, crop large white borders, and resize the image

# simply to speed-up the execution of this example notebook

elec_image = scipy.misc.imresize(

mpimg.imread(’EC2.brainreg.clr.png’)[20:1350, 240:2160, 0:3], 50)

# Downsample the image to create a second dataset at 1/5th the

# resolution using nearest-neighbor interpolation.

elec_image_resize = scipy.misc.imresize(elec_image,

size=20,

interp=’nearest’)

In [3]: # Create the test HDF5 file

tempfile = NamedTemporaryFile()

test_file = h5py.File(tempfile.name, ’a’)

# Write the datasets to file

test_file[’image1’] = elec_image

test_file[’image2’] = elec_image_resize

image1 = test_file[’image1’]

image2 = test_file[’image2’]

In [4]: plt.rcParams[’figure.figsize’] = (12.0, 10.0)

plt.subplot(1, 2, 1)

plt.imshow(image1[:])

plt.title("Original Image (Size="+str(image1.shape)+")")

plt.subplot(1, 2, 2)

1
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plt.imshow(image2[:])

plt.title("Downsampled Image (Size="+str(image2.shape)+")")

plt.xlim(0, image1.shape[1])

plt.ylim(image1.shape[0], 0)

Out[4]: (665, 0)

1.2 Create the mapping between the images

Compute a map from the low-res version image2 to the full-res version image1

In [5]: # Initalize the array for our map

image_map = np.zeros(shape=(elec_image_resize.shape[0],

elec_image_resize.shape[1],

2, # Each index has two components (x,y)

25), # Each pixel in image2 corresponds to 25 pixel in image1

dtype=’uint16’)

# Fill the map with the pixel correspondences

for xi in range(image_map.shape[0]):

for yi in range(image_map.shape[1]):

image_map[xi, yi, 0, :] = np.resize(np.arange(xi*5, xi*5+5), 25)

image_map[xi, yi, 1, 0:5 ] = yi*5

image_map[xi, yi, 1, 5:10 ] = yi*5 + 1

image_map[xi, yi, 1, 10:15] = yi*5 + 2

image_map[xi, yi, 1, 15:20] = yi*5 + 3

image_map[xi, yi, 1, 20:25] = yi*5 + 4

# Save the map data to file

test_file[’image_map’] = image_map

image_map_h5 = test_file[’image_map’]

# Create optional user data documenting how the image2

# was generated from image1

user_description = "Resized version of target image"

user_properties = {’algorithm’: ’scipy.misc.imresize’,

’parameters’: {’interp’: ’nearest’,

’size’: 20}}

2
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1.3 Create the relationship between the images

In [6]: # Create the index map relationship

mapping_relationship = RelationshipAttribute.create_index_map_relationship(

name=’full resolution image’, # Name of the relationship

map_object=image_map_h5, # Index map

source_object=image2, # Source object of the relationship

target_object=image1, # Target object of the relationship

map_indexing_axis=2, # Axis in the map with index components

map_stack_axis=3, # Axis in the map with the index list

source_axis=[0,1], # Axes in the source to which the relationship applies

target_axis=[0,1], # Axes in the target to which the relationship applies

user_description=user_description, # Optional user description of the relationship

user_properties=user_properties) # Optional user properties describing the relationship

1.4 Using the Relationship

Getting all relationships that define the index map relationship is simple:

In [7]: imr = RelationshipAttribute.get_index_map_relationship(image2, ’full resolution image’)

# Alternatively, we could have here naturally also just used the mapping_relationship

# which were returned to us when we created the relationships,

Using the index map relationship we can now easily retrieve all the datasets involved in our relationships:

In [8]: imr_source = imr[’MAP_TO_SOURCE’].target

imr_target = imr[’MAP_TO_TARGET’].target

imr_map = imr[’MAP_TO_SOURCE’].source

Now that we have our datasets, lets see how we can load a single pixel in our source image as well as the
corresponding pixels in our target image.

In [9]: # Creating a selection so that we can easily reuse it

imr_select = np.s_[47,98]

# Loading the selected pixel from the source (i.e., image2)

source_data = imr_source[imr_select]

# Mapping the selection to the target (i.e., image1)

imr_select_target = imr[’MAP_TO_TARGET’][imr_select]

# Loading the corresponding pixels from the target dataset

target_data = imr_target[:][imr_select_target[0,:], imr_select_target[1,:]]

As we can see, using relationships greatly simplifies the collaborative use of data. We were able to easily
load data from our two images and we didn’t even need to know the datasets nor what the mapping between
our datasets was.

Now that we have loaded all our data, let’s plot it to see what is going on:

In [10]: # Plot the source image

plt.subplot(2, 2, 1)

g = plt.imshow(imr_source[:])

plt.title(’Source Image: ’ + imr_source.name)

# Draw an arrow pointing to the selected pixel

head_size = 12

g.axes.arrow(0,

imr_select[0],

imr_select[1]-head_size,

0,

3
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head_width=head_size,

head_length=head_size,

color=’blue’)

# Set the x/y limits of the plot for direct comparison

plt.xlim(0, imr_target.shape[1])

plt.ylim(imr_target.shape[0], 0)

# Draw a plot of our selected pixel

plt.subplot(2, 2, 2)

imgplot = plt.imshow(source_data.reshape(1,1,3))

plt.title(’Selected source pixel’)

imgplot.set_interpolation(’nearest’)

# Draw a plot of our target image

plt.subplot(2, 2, 3)

g = plt.imshow(imr_target[:])

plt.title(’Target Image: ’ + imr_target.name)

# Draw an arrow pointing to the corresponding pixel

min_y_index = imr_select_target[1,:].min()

min_x_index = imr_select_target[0,:].min()

head_size = 22

g.axes.arrow(0,

min_x_index,

min_y_index-head_size,

0,

head_width=head_size,

head_length=head_size,

color=’blue’)

# Draw a plot of the selected target pixels

plt.subplot(2, 2, 4)

imgplot = plt.imshow(target_data.reshape(5,5,3, order=’F’))

plt.title(’Selected target pixels’)

imgplot.set_interpolation(’nearest’)
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As we can see, we selected a single pixel in the source image, which corresponds a 5x5 subimage (i.e.,
25 pixels) in the target image. Since we used nearest neightbor interpolation when resizing the image, we
see that the value of the source pixel matches the value of the top-left pixel in our target image (i.e., the
selected target pixel with the smallest x and y index). The blue lines we added to the image, furthermore,
confirm that we correctly selected the correct region in target based on the selection in our source.

1.5 Additional Plots for Validation

1.5.1 Specification of the Relationships that Define our Index Map Relationship

In [11]: print "image2 ---> order ---> image_map"

print imr[’SOURCE_TO_MAP’].relationship_spec.to_json(True)

print ""

print "image_map ---> indexes ---> image1"

print imr[’MAP_TO_TARGET’].relationship_spec.to_json(True)

print ""

print "image_map ---> order ---> image2"

print imr[’SOURCE_TO_MAP’].relationship_spec.to_json(True)

print ""

print "image2 ---> user ---> image1 (optional)"

if imr[’SOURCE_TO_TARGET’] is not None:

5
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print imr[’SOURCE_TO_TARGET’].relationship_spec.to_json(True)

else:

print "Not set"

image2 ---> order ---> image map

{
"attribute": "full resolution image IMR SOURCE TO MAP",

"axis": [

0,

1

],

"description": "The target of this relationship defined a mapfrom the source of this relationship to/image1",

"optional": false,

"prefix": null,

"properties": null,

"relationship type": "order",

"target": {
"axis": [

0,

1

],

"dataset": "image map",

"filename": null,

"global path": null,

"group": null,

"prefix": null

}
}

image map ---> indexes ---> image1

{
"attribute": "full resolution image IMR MAP TO TARGET",

"axis": {
"INDEXING AXIS": 2,

"STACK AXIS": 3

},
"description": "The source defines a map from /image2to the target of this relationship",

"optional": false,

"prefix": null,

"properties": null,

"relationship type": "indexes",

"target": {
"axis": [

0,

1

],

"dataset": "image1",

"filename": null,

"global path": null,

"group": null,

"prefix": null

}
}

6
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image map ---> order ---> image2

{
"attribute": "full resolution image IMR SOURCE TO MAP",

"axis": [

0,

1

],

"description": "The target of this relationship defined a mapfrom the source of this relationship to/image1",

"optional": false,

"prefix": null,

"properties": null,

"relationship type": "order",

"target": {
"axis": [

0,

1

],

"dataset": "image map",

"filename": null,

"global path": null,

"group": null,

"prefix": null

}
}

image2 ---> user ---> image1 (optional)

{
"attribute": "full resolution image IMR SOURCE TO TARGET",

"axis": [

0,

1

],

"description": "Resized version of target image",

"optional": false,

"prefix": null,

"properties": {
"algorithm": "scipy.misc.imresize",

"parameters": {
"interp": "nearest",

"size": 20

}
},
"relationship type": "user",

"target": {
"axis": [

0,

1

],

"dataset": "image1",

"filename": null,

"global path": null,

"group": null,

"prefix": null

}

7
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}

In [ ]:
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